Abstract: | Neural cells are classically identified in vivo and in vitro by a combination of morphological and immunocytochemical criteria. Here, we demonstrate that antibodies used to identify mammalian oligodendrocytes, neurons, and astrocytes recognize these cell types in the developing spiny dogfish central nervous system and in cultures prepared from this tissue. Oligodendrocyte-lineage-specific antibodies O1, O4, and R-mAb labeled cells in the 9 cm dogfish brain stem's medial longitudinal fascicle (MLF) and in areas lateral to it. Process-bearing cells, cultured from the dogfish brain stem, were also labeled with these antibodies. An anti-lamprey neurofilament antibody (LCM), which recognized 60 and 150 kDa proteins in dogfish brain stem homogenates, labeled axons and neurons in the brain stem and axons in the cerebellum of the dogfish embryo. It also labeled cell bodies and/or processes of some cultured cerebellar cells. An anti-bovine glial fibrillary acidic protein antibody, which recognized 42–44 kDa protein(s) in dogfish brain stem homogenates, labeled astrocyte-like processes in the brain stem and cerebellum of the dogfish embryo and numerous large and small flat cells in the cerebellar cultures. These results demonstrate that dogfish oligodendrocytes, neurons, and astrocytes express antigens that are conserved in mammalian neural cells. The ability to culture and identify neural cell types from cartilaginous fish sets the stage for studies to determine if proliferation, migration, and differentiation of these cell types are regulated in a similar fashion to mammalian cells. © 1995 Wiley-Liss, Inc. |