首页 | 本学科首页   官方微博 | 高级检索  
     


Double labeling of GABA and cytochrome oxidase in the macaque visual cortex: Quantitative EM analysis
Authors:Feng Nie  Margaret T. T. Wong-Riley
Abstract:In the primate striate cortex, cytochrome oxidase (CO)-rich puffs differ from CO-poor interpuffs in their metabolic levels and physiological properties. The neurochemical basis for their metabolic and physiological differences is not well understood. The goal of the present study was to examine the relationship between the distribution of gamma aminobutyric acid (GABA)/non-GABA synapses and CO levels in postsynaptic neuronal profiles and to determine whether or not a difference existed between puffs and interpuffs. By combining CO histochemistry and postembedding GABA immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. In both puffs and interpuffs, GABA-immunoreactive (GABA-IR) neurons were the only cell type that received both non-GABA-IR (presumed excitatory) and GABA-IR (presumed inhibitory) axosomatic synapses, and they had three times as many mitochondria darkly reactive for CO than non-GABA-IR neurons, which received only GABA-IR axosomatic synapses. GABA-IR neurons and terminals in puffs had a larger mean size, about twice as many darkly reactive mitochondria, and a higher ratio of non-GABA-IR to GABA-IR axosomatic synapses than those in interpuffs (2.3:1 vs. 1.6:1; P < 0.01). There were significantly more synapses of both non-GABA-IR and GABA-IR types in the neuropil of puffs than of interpuffs; however, the ratio of non-GABA-IR to GABA-IR synapses was significantly higher in puffs (2.86:1) than in interpuffs (2.08:1; P < 0.01). Our results are consistent with the hypothesis that the level of oxidative metabolism in postsynaptic neurons and neuronal processes is tightly governed by the strength and proportion of excitatory over inhibitory synapses. Thus, the present results suggest that (1) GABA-IR neurons in the macaque striate cortex have a higher level of oxidative metabolism than non-GABA ones because their somata receive direct excitatory synapses and their terminals are more tonically active; (2) the higher proportion of presumed excitatory synapses in puffs imposes a greater energy demand there than in interpuffs; and (3) excitatory synaptic activity may be more prominent in puffs than in interpuffs because puffs receive a greater proportion of excitatory synapses from multiple sources including the lateral geniculate nucleus, which is not known to project to the interpuffs. © 1995 Wiley-Liss, Inc.
Keywords:immunocytochemistry  mitochondria  oxidative metabolism  synapses  ultrastructure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号