Effect of diabetes on the mechanisms of intrathecal antinociception of sildenafil in rats |
| |
Authors: | Araiza-Saldaña Claudia Ivonne Reyes-García Gerardo Bermúdez-Ocaña Deysi Yadira Pérez-Severiano Francisca Granados-Soto Vinicio |
| |
Affiliation: | Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Coapa, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330 México, D.F., Mexico. |
| |
Abstract: | The mechanism of intrathecal antinociceptive action of the phosphodiesterase 5 inhibitor sildenafil was assessed in diabetic rats using the formalin test. Intrathecal administration of sildenafil (12.5-50 microg) produced a dose-related antinociception during both phases of the formalin test in non-diabetic and diabetic rats. Intrathecal pretreatment with N-L-nitro-arginine methyl ester (L-NAME, nitric oxide (NO) synthase inhibitor, 1-50 microg), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, guanylyl cyclase inhibitor, 1-10 microg), KT5823 (protein kinase G (PKG) inhibitor, 5-500 ng), charybdotoxin (large-conductance Ca2+-activated K+ channel blocker, 0.01-1 ng), apamin (small-conductance Ca2+-activated K+ channel blocker, 0.1-3 ng) and glibenclamide (ATP-sensitive K+ channel blocker, 12.5-50 microg), but not N-D-nitro-arginine methyl ester (D-NAME, 50 microg) or saline, significantly diminished sildenafil (50 microg)-induced antinociception in non-diabetic rats. Intrathecal administration of ODQ, KT5823, apamin and glibenclamide, but not L-NAME nor charybdotoxin, reversed intrathecal antinociception induced by sildenafil in diabetic rats. Results suggest that sildenafil produces its intrathecal antinociceptive effect via activation of NO-cyclic GMP-PKG-K+ channels pathway in non-diabetic rats. Data suggest that diabetes leads to a dysfunction in NO and large-conductance Ca2+-activated K+ channels. Sildenafil could have a role in the pharmacotherapy of diabetes-associated pain. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|