Quantifying 2-factor phase relations in non-linear responses from low characteristic-frequency auditory-nerve fibers |
| |
Authors: | Tai Lin Julius L. Goldstein |
| |
Affiliation: | Central Institute for the Deaf and Washington University, 818 S. Euclid Avenue, St. Louis, MO 63110, USA |
| |
Abstract: | Auditory-nerve excitation by two response factors that can be in antiphase has been hypothesized by Kiang (1990) on the basis of non-linear interference in responses to tones (Kiang et al., 1969). The general conditions for antiphasic responses and the relevance of the hypothesis for other auditory stimuli are unknown. Clarification was sought in a systematic modeling study of published data on level-dependent non-linear responses from low characteristics-frequency (CF) auditory-nerve fibers for a broad variety of acoustic stimuli. The MBPNL non-linear I/O model of cochlear frequency analysis (Goldstein, 1990), which incorporates the 2-factor hypothesis, was used to stimulate the reported non-linear phenomena. It was found that experiments with paired click stimuli (Goblick and Pfeiffer, 1969) and with octave-band complex tones (Horst et al., 1990), in addition to experiments with single clicks or tones, are sensitive to the phase difference between factors. Surprisingly, the paired-click transient responses require a quadrature phase, while the complex-tone steady-state responsesrequire an antiphase relation. The MBPNL model simulations of all low-CF data surveyed, for simple and complex stimuli, are consistent with a quadrature phase for transient responses and antiphase relation for steady-state responses. It is hypothesized that some adaptive, low-CF, cochlear mechanism, not described by the basic MBPNL model, produces a temporal transition of the ‘2-factor’ response from an initial quadrature relation (tip leading) to a final antiphase relation. New experimental and modeling research guided by this working hypothesis is proposed. |
| |
Keywords: | Non-linear cochlear sound analysis Model of 2-factor response Cochlear phase-adaptation hypothesis |
本文献已被 ScienceDirect 等数据库收录! |
|