首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian hierarchical modeling of substate area estimates from the Medicare CAHPS survey
Authors:Tianyi Cai  Alan M. Zaslavsky
Affiliation:1. Data and Research, BitSight, Boston, Massachusetts;2. Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
Abstract:Each year, surveys are conducted to assess the quality of care for Medicare beneficiaries, using instruments from the Consumer Assessment of Healthcare Providers and Systems (CAHPS®) program. Currently, survey measures presented for Fee-for-Service beneficiaries are either pooled at the state level or unpooled for smaller substate areas nested within the state; the choice in each state is based on statistical tests of measure heterogeneity across areas within state. We fit spatial-temporal Bayesian random-effects models using a flexible parameterization to estimate mean scores for each of the domains formed by 94 areas in 32 states measured over 5 years. A Bayesian hat matrix provides a heuristic interpretation of the way the model combines information for estimates in these domains. The model can be used to choose between reporting of state- or substate-level direct estimates in each state, or as a source of alternative small-area estimates superior to either direct estimate. We compare several candidate models using log pseudomarginal likelihood and posterior predictive checks. Results from the best-performing model for 8 measures surveyed from 2012 to 2016 show substantial reductions in mean squared error (MSE) over direct estimates.
Keywords:hat matrix  health care quality  Markov chain Monte Carlo  multilevel models  small-area estimation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号