首页 | 本学科首页   官方微博 | 高级检索  
     


Diagnostic algorithm: how to make use of new 2D, 3D and 4D ultrasound technologies in breast imaging
Authors:Weismann C F  Datz L
Affiliation:Private University Institute of Diagnostic Radiology, St. Johanns Hospital Landeskliniken Salzburg, Muellner Hauptstrasse 48, 5020-Salzburg, Austria. christian.weismann@inode.at
Abstract:The aim of this publication is to present a time saving diagnostic algorithm consisting of two-dimensional (2D), three-dimensional (3D) and four-dimensional (4D) ultrasound (US) technologies. This algorithm of eight steps combines different imaging modalities and render modes which allow a step by step analysis of 2D, 3D and 4D diagnostic criteria. Advanced breast US systems with broadband high frequency linear transducers, full digital data management and high resolution are the actual basis for two-dimensional breast US studies in order to detect early breast cancer (step 1). The continuous developments of 2D US technologies including contrast resolution imaging (CRI) and speckle reduction imaging (SRI) have a direct influence on the high quality of three-dimensional and four-dimensional presentation of anatomical breast structures and pathological details. The diagnostic options provided by static 3D volume datasets according to US BI-RADS analogue assessment, concerning lesion shape, orientation, margin, echogenic rim sign, lesion echogenicity, acoustic transmission, associated calcifications, 3D criteria of the coronal plane, surrounding tissue composition (step 2) and lesion vascularity (step 6) are discussed. Static 3D datasets offer the combination of long axes distance measurements and volume calculations, which are the basis for an accurate follow-up in BI-RADS II and BI-RADS III lesions (step 3). Real time 4D volume contrast imaging (VCI) is able to demonstrate tissue elasticity (step 5). Glass body rendering is a static 3D tool which presents greyscale and colour information to study the vascularity and the vascular architecture of a lesion (step 6). Tomographic ultrasound imaging (TUI) is used for a slice by slice documentation in different investigation planes (A-,B- or C-plane) (steps 4 and 7). The final step 8 uses the panoramic view technique (XTD-View) to document the localisation within the breast and to make the position of a lesion simply reproducible.
Keywords:BI-RADS, breast imaging and reporting data system   CRI, contrast resolution imaging   SRI, speckle reduction imaging   THI, tissue harmonic imaging   TUI, tomographic ultrasound imaging   US, ultrasound   VCI, volume contrast imaging   VoCal, volume calculation   VOI, volume of interest
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号