首页 | 本学科首页   官方微博 | 高级检索  
检索        


Antileishmanial potential of a marine sponge, <Emphasis Type="Italic">Haliclona exigua</Emphasis> (Kirkpatrick) against experimental visceral leishmaniasis
Authors:Anuradha Dube  Nasib Singh  A Saxena  V Lakshmi
Institution:(1) Division of Parasitology, Central Drug Research Institute, Lucknow, 226 001, India;(2) Division of Medicinal and Process Chemistry, Central Drug Research Institute, Chattar Manzil Palace, Post Box No. 173, Lucknow, 226 001, India
Abstract:In this study, we are reporting antileishmanial activity of a marine sponge Haliclona exigua, belonging to phylum Porifera. The crude methanol extract and its three fractions were tested both in vitro and in vivo. The crude extract exerted almost complete inhibition of promastigotes at 50 μg/ml and 76.4 ± 6.5% inhibition of intracellular amastigotes at 100 μg/ml concentration with IC50 values of 18.6 μg/ml and 47.2 μg/ml, respectively. When administered to Leishmania donovani infected hamsters at a dose of 500 mg/kg × 5, p.o., it resulted in 72.2 ± 10.4% inhibition of intracellular amastigotes. At a lower dose (250 mg/kg), it exhibited 43.9 ± 5.1% inhibition. Among the fractions, highest antileishmanial activity both in vitro (>90%) and in vivo (60.9 ± 18.3%) was observed in n-butanol (soluble) fraction with IC50 values of 8.2 μg/ml and 31.2 μg/ml against promastigotes and intracellular amastigotes, respectively. Hexane fraction also showed comparatively good activity against both the stages of parasites in vitro but was moderately active in leishmania-infected hamsters. Chloroform fraction resulted in 45 ± 10.2% inhibition in vivo at a dose of 500 mg/kg × 5, p.o., whereas it was inactive in vitro. n-Butanol (insoluble) fraction was inactive both in vitro and in vivo. Araguspongin C, an alkaloid isolated from n-butanol (soluble) fraction exhibited moderate inhibition of promastigotes and intracellular amastigotes at 100 μg/ml but showed weak antileishmanial action in vivo. Our findings indicate that this marine sponge has the potential to provide new lead toward development of an effective antileishmanial agent and, hence, calls for more exhaustive studies for exploiting the vast world of marine resources to combat the scourge of several parasitic diseases.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号