首页 | 本学科首页   官方微博 | 高级检索  
     


Permanent cardiovascular protection from hypertension by the AT(1) receptor antisense gene therapy in hypertensive rat offspring
Authors:Reaves P Y  Gelband C H  Wang H  Yang H  Lu D  Berecek K H  Katovich M J  Raizada M K
Affiliation:Department of Physiology, College of Medicine, Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
Abstract:Our previous studies have demonstrated that the introduction of angiotensin II type I receptor antisense (AT(1)R-AS) cDNA by a retrovirally mediated delivery system prevents the development of hypertension in the spontaneously hypertensive rat (SHR), an animal model for primary hypertension in humans. These results have led us to propose the hypothesis that an interruption of the renin-angiotensin system (RAS) activity at a genetic level would prevent hypertension on a permanent basis. F(1) and F(2) generations of offspring from a retroviral vector, LNSV- and LNSV-AT(1)R-AS-treated SHR, were generated, and various physiological parameters indicative of hypertension were studied and compared with those of their parents to investigate this hypothesis. Both F(1) and F(2) generations of LNSV-AT(1)R-AS-treated SHR expressed a persistently lower blood pressure, decreased cardiac hypertrophy and fibrosis, decreased medial thickness, and normalization of renal artery excitation-contraction coupling, Ca(2+) current, and [Ca(2+)](i) when compared with offspring derived from the LNSV-treated SHR. In fact, the magnitude of the prevention of these pathophysiological alterations was similar to that observed in the LNSV-AT(1)R-AS-treated SHR parent. The prevention of cardiovascular pathophysiology and expression of normotensive phenotypes are, at least in part, a result of integration and subsequent transmission of AT(1)R-AS from the SHR parents to offspring. These data demonstrate that a single intracardiac injection of LNSV-AT(1)R-AS causes a permanent cardiovascular protection against hypertension as a result of a genomic integration and germ line transmission of the AT(1)R-AS in the SHR offspring.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号