首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of aconitine-induced block of delayed rectifier K+ current in differentiated NG108-15 neuronal cells
Authors:Lin Ming-Wei  Wang Ya-Jean  Liu Shiuh-Inn  Lin An-An  Lo Yi-Ching  Wu Sheng-Nan
Affiliation:Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan.
Abstract:The effects of aconitine (ACO), a highly toxic alkaloid, on ion currents in differentiated NG108-15 neuronal cells were investigated in this study. ACO (0.3-30 microM) suppressed the amplitude of delayed rectifier K+ current (I K(DR)) in a concentration-dependent manner with an IC50 value of 3.1 microM. The presence of ACO enhanced the rate and extent of I K(DR) inactivation, although it had no effect on the initial activation phase of I K(DR). It could shift the inactivation curve of I K(DR) to a hyperpolarized potential with no change in the slope factor. Cumulative inactivation for I K(DR) was also enhanced by ACO. Orphenadrine (30 microM) or methyllycaconitine (30 microM) slightly suppressed I K(DR) without modifying current decay. ACO (10 microM) had an inhibitory effect on voltage-dependent Na+ current (I Na). Under current-clamp recordings, ACO increased the firing and widening of action potentials in these cells. With the aid of the minimal binding scheme, the ACO actions on I K(DR) was quantitatively provided with a dissociation constant of 0.6 microM. A modeled cell was designed to duplicate its inhibitory effect on spontaneous pacemaking. ACO also blocked I K(DR) in neuroblastoma SH-SY5Y cells. Taken together, the experimental data and simulations show that ACO can block delayed rectifier K+ channels of neurons in a concentration- and state-dependent manner. Changes in action potentials induced by ACO in neurons in vivo can be explained mainly by its blocking actions on I K(DR) and I Na.
Keywords:Aconitine   NG108-15 cells   Delayed rectifier K+ current   Na+ current   Action potential
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号