首页 | 本学科首页   官方微博 | 高级检索  
     

采集表面肌电信号应用于动作识别的可行性*
引用本文:卢蕾,殷涛,靳静娜,李颖,刘志朋. 采集表面肌电信号应用于动作识别的可行性*[J]. 中国神经再生研究, 2011, 15(22): 4103-4106
作者姓名:卢蕾  殷涛  靳静娜  李颖  刘志朋
作者单位:中国医学科学院北京协和医学院生物医学工程研究所,天津市 300192,中国医学科学院北京协和医学院生物医学工程研究所,天津市 300192,中国医学科学院北京协和医学院生物医学工程研究所,天津市 300192,中国医学科学院北京协和医学院生物医学工程研究所,天津市 300192,中国医学科学院北京协和医学院生物医学工程研究所,天津市 300192
基金项目:科技部十一五科技支撑计划项目(2007BAI07A18)资助
摘    要:背景:文献表明上肢前臂运动时所产生的表面肌电信号具有非线性特征,而肢体运动时肌电信号又呈现出非平稳特性。目的:设计一种简单的拾取电路采集表面肌电信号,拟应用于动作肌电信号的特征识别。方法:根据表面肌电信号的特点,设计高共模抑制比的前端放大电路,抑制共模干扰;采用低通滤波电路,有源双T带阻滤波器对信号进行去噪处理;对采集得到的信号进行小波包变换,得到信号的特征量。结果与结论:所设计的表面肌电信号检测电路具有较高共模抑制比,并能有效地滤除50 Hz工频信号,可以满足肌电信号采集电路的基本要求。肌电信号的处理结果表明采用子频段能量值的方法可以区分手部4种不同动作。

关 键 词:表面肌电信号  信号检测  去噪处理  小波包变换  数字化医学
收稿时间:2011-01-06
修稿时间:2011-04-08

Feasibility of surface electromyography signal acquisition for action recognition
Lu Lei,Yin Tao,Jin Jing-n,Li Ying and Liu Zhi-peng. Feasibility of surface electromyography signal acquisition for action recognition[J]. Neural Regeneration Research, 2011, 15(22): 4103-4106
Authors:Lu Lei  Yin Tao  Jin Jing-n  Li Ying  Liu Zhi-peng
Affiliation:Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China,Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China,Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China,Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China,Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
Abstract:BACKGROUND: Surface electromyography (sEMG) are widely adopted because of its scot-free. Because of the non-stationary of signals, sEMG signals can be classified in wavelet packet transform to obtain effective parameters.OBJECTIVE: To design a detection circuit according to the characteristics of the sEMG, which can pick-up the SEMG signals for action recognition. METHODS: The high CMMR preamplifier was designed to restrain the common code interference; low-pass filter and active double-T band-stop filter were carried on de-noising processing; sEMG signals could be classified in wavelet packet transform to obtain effective parameters.RESULTS AND CONCLUSION: In the experiment, the circuit could implement the anticipated target, pick-up the sEMG and restrain the interference with 50 Hz; further, four different actions on hands could be recognized by using sub band energy value extracted in the wavelet packet translation of the sEMG.
Keywords:Surface Electromyography   signal detection   noisy removing   wavelet packet translation
点击此处可从《中国神经再生研究》浏览原始摘要信息
点击此处可从《中国神经再生研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号