首页 | 本学科首页   官方微博 | 高级检索  
检索        


Removal of cardiac beat artifact in oesophageal pressure measurement by frequency analysis
Authors:Mr Y P Cheng  H D Wu  C Y Wang  G J Jan
Institution:Department of Electrical Engineering, National Taiwan University, Taipei. ypcheng@love.url.com.tw
Abstract:Oesophageal pressure (Pes) measurements are important in medical research and useful in clinical diagnosis. Measurements, however, are contaminated heavily by cardiac artifacts. The spectrum and waveform of the Pes signal is obtained from the oesophageal balloon. Adaptive finite impulse response (AFIR) filter and modified adaptive noise cancellation (MANC) methods are adopted to filter out cardiac beat interference. These results are compared. In the frequency domain, frequency variations and spectral overlap between the Pes components and cardiac beat signal components impact on the performance of the filter. From our experimental results on power strength, the fourth or higher harmonics did not have any significant effect on the filter performance. However, the second harmonics of these signals had a significant effect on the filtering result. Thus, in the design of AFIR filters, attention is needed to minimise these effects. In frequency analysis, these harmonics or overlapping frequencies do not affect MANC. MANC was the better method for eliminating cardiac beat artifact in Pes measurement. The dynamic compliance (Cdyn) was also used to evaluate the performance of MANC and AFIR. The standard deviation of Cdyn was less than 0.15 using MANC, compared with standard deviations as high as 0.57 for AFIR. We conclude that MANC performs better than AFIR.
Keywords:Adaptive filter  Finite impulse response (AFIR)  Adaptive noise cancellation (ANC)  Oesophageal pressure signal (Pes)  Least mean square (LMS)  Dynamic compliance (Cdyn)
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号