首页 | 本学科首页   官方微博 | 高级检索  
     

鼻腔计算机流体力学模拟及与鼻声反射和鼻阻力计相关研究
引用本文:郭宇峰,张宇宁,刘树红,卢晓峰,朱敏,陈学明,陈广. 鼻腔计算机流体力学模拟及与鼻声反射和鼻阻力计相关研究[J]. 上海交通大学学报(医学版), 2009, 29(7): 845
作者姓名:郭宇峰  张宇宁  刘树红  卢晓峰  朱敏  陈学明  陈广
作者单位:1. 上海交通大学,医学院瑞金医院耳鼻咽喉科,上海,200025
2. 华威大学,工程学院,考文垂CV4 7AL
3. 清华大学,热能工程系,水沙科学与水利水电工程国家重点实验室,北京,100084
4. 上海交通大学,医学院第九人民医院口腔颌面外科,上海市口腔医学重点实验室,上海市口腔医学研究所,上海,200011
摘    要:目的 建立计算机流体力学(CFD)模型模拟平静呼吸状态下正常鼻腔形态和鼻腔内部流动,与鼻声反射和鼻阻力计测量进行对照分析。方法 对志愿者鼻腔行CT扫描,通过Simplant 10.0建立完整的鼻气道三维模型,利用Gambit 2.3.16网格划分后,用Fluent 6.3.2模拟不同流量下的鼻腔内部流体力学。将经CFD模型提取和计算的鼻腔冠状位截面积和鼻腔压降数据与鼻声反射和鼻阻力计的测量结果进行比较。结果 CFD模型鼻腔冠状位面积与鼻声反射测量数据,在距前鼻孔30 mm内两者的拟合度高,在距前鼻孔50 mm外则后者大于前者。CFD模型计算各流量下鼻腔压降变化与鼻阻力计测量得到的压力 流量分布曲线的变化趋势一致,但压降值前者小于后者。结论 CFD模型能精确反映鼻腔形态,准确计算鼻腔内部的流场数据。与以往测量手段相比较,CFD模型能更加直观且详细地表现鼻腔内部流体力学。

关 键 词:计算机流体力学  三维重建  鼻腔  鼻声反射  鼻阻力

Relationship between computational fluid dynamics simulation and acoustic rhinometry and rhinomanometry in nasal cavity
GUO Yu-feng,ZHANG Yu-ning,LIU Shu-hong,LU Xiao-feng,ZHU Min,CHEN Xue-ming,CHEN Guang. Relationship between computational fluid dynamics simulation and acoustic rhinometry and rhinomanometry in nasal cavity[J]. Journal of Shanghai Jiaotong University:Medical Science, 2009, 29(7): 845
Authors:GUO Yu-feng  ZHANG Yu-ning  LIU Shu-hong  LU Xiao-feng  ZHU Min  CHEN Xue-ming  CHEN Guang
Abstract:Objective To reconstruct a computational fluid dynamics (CFD) model of human nasal cavity, and make comparison analysis with acoustic rhinometry and rhinomanometry. Methods One healthy volunteer was performed CT scanning of nasal cavity, three dimensional CFD model was established by Simplant 10.0 and Gambit 2.3.16, and Fluent 6.3.2 was employed to simulate the airflow of nasal cavity. Acoustic rhinometer was used to assess the area of nasal cavity, rhinomanometry was adopted to measure the airflow and intranasal pressure drop during inspiration, and the results were compared with those obtained from CFD model. Results Cross section area of nasal cavity obtained from CFD model matches well with that measured by acoustic rhinometer within 30 mm distance from nostril, while the latter was larger than the former beyond 50 mm distance from nostril. The trend of intranasal pressure drop at different airflows measured by CFD model was the same as that measured by rhinomanometry, while the transnasal pressure obtained by CFD model was lower than that recorded by rhinomanometry. Conclusion CFD model can accurately simulate the shape of nasal cavity and measure the parameters of intranasal airflow, which helps to understand the airflow characteristics of nasal cavity.
Keywords:computational fluid dynamics  three-dimensional reconstruction  nasal cavity  acoustic rhinometry  rhinomanometry
本文献已被 万方数据 等数据库收录!
点击此处可从《上海交通大学学报(医学版)》浏览原始摘要信息
点击此处可从《上海交通大学学报(医学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号