首页 | 本学科首页   官方微博 | 高级检索  
     


TolC-Dependent Modulation of Host Cell Death by the Francisella tularensis Live Vaccine Strain
Authors:Christopher R. Doyle  Ji-An Pan  Patricio Mena  Wei-Xing Zong  David G. Thanassi
Affiliation:aDepartment of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA ;bCenter for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
Abstract:Francisella tularensis is a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of the F. tularensis live vaccine strain (LVS) and demonstrated that a ΔtolC mutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required for F. tularensis to preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolC mutant. These findings support a model wherein the immunomodulatory capacity of F. tularensis relies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolC LVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolC mutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection by F. tularensis and highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号