Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis |
| |
Affiliation: | 1. School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi, China;2. Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;3. Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;4. Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea;1. School of Computer Science & Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China;2. Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA;3. Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea;1. Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA;2. Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA;3. Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA;4. Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea |
| |
Abstract: | In prostate cancer radiotherapy, computed tomography (CT) is widely used for dose planning purposes. However, because CT has low soft tissue contrast, it makes manual contouring difficult for major pelvic organs. In contrast, magnetic resonance imaging (MRI) provides high soft tissue contrast, which makes it ideal for accurate manual contouring. Therefore, the contouring accuracy on CT can be significantly improved if the contours in MRI can be mapped to CT domain by registering MRI with CT of the same subject, which would eventually lead to high treatment efficacy. In this paper, we propose a bi-directional image synthesis based approach for MRI-to-CT pelvic image registration. First, we use patch-wise random forest with auto-context model to learn the appearance mapping from CT to MRI domain, and then vice versa. Consequently, we can synthesize a pseudo-MRI whose anatomical structures are exactly same with CT but with MRI-like appearance, and a pseudo-CT as well. Then, our MRI-to-CT registration can be steered in a dual manner, by simultaneously estimating two deformation pathways: 1) one from the pseudo-CT to the actual CT and 2) another from actual MRI to the pseudo-MRI. Next, a dual-core deformation fusion framework is developed to iteratively and effectively combine these two registration pathways by using complementary information from both modalities. Experiments on a dataset with real pelvic CT and MRI have shown improved registration performance of the proposed method by comparing it to the conventional registration methods, thus indicating its high potential of translation to the routine radiation therapy. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|