首页 | 本学科首页   官方微博 | 高级检索  
     


Differential regulation of glial cell line–derived neurotrophic factor (GDNF) expression in human neuroblastoma and glioblastoma cell lines
Authors:A.N. Verity  T.L. Wyatt  W. Lee  B. Hajos  P.A. Baecker  R.M. Eglen  R.M. Johnson
Abstract:Human SK‐N‐AS neuroblastoma and U‐87MG glioblastoma cell lines were found to secrete relatively high levels of glial cell line–derived neurotrophic factor (GDNF). In response to growth factors, cytokines, and pharmacophores, the two cell lines differentially regulated GDNF release. A 24‐hr exposure to tumor necrosis factor‐α (TNFα; 10 ng/ml) or interleukin‐1β (IL‐1β; 10 ng/ml) induced GDNF release in U‐87MG cells, but repressed GDNF release from SK‐N‐AS cells. Fibroblast growth factors (FGF)‐1, ‐2, and ‐9 (50 ng/ml), the prostaglandins PGA2, PGE2, and PGI2 (10 μM), phorbol 12,13‐didecanoate (PDD; 10 nM), okadaic acid (10 nM), dexamethasone (1 μM), and vitamin D3 (1 μm) also differentially effected GDNF release from U‐87MG and SK‐N‐AS cells. A result shared by both cell lines, was a two‐ to threefold increase in GDNF release by db‐cAMP (1 mM), or forskolin (10 μM). In general, analysis of steady‐state GDNF mRNA levels correlated with changes in extracellular GDNF levels in U‐87MG cells but remained static in SK‐N‐AS cells. The data suggest that human GDNF synthesis/release can be regulated by numerous facto, signaling through multiple and diverse secondary messenger systems. Furthermore, we provide evidence of differential regulation of human GDNF synthesis/release in cells of glial (U‐87MG) and neuronal (SK‐N‐AS) origin. J. Neurosci. Res. 55:187–197, 1999. © 1999 Wiley‐Liss, Inc.
Keywords:GDNF  neurotrophin  release  expression  neuoblastoma  glioblastoma
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号