首页 | 本学科首页   官方微博 | 高级检索  
检索        


Transverse laxity of the forefoot
Institution:1. Department of Orthopaedic Surgery, IM2S, 11 Avenue d''Ostende, 98000 Monaco;2. Department of Orthopaedic Surgery, AZ Turnhout, Steenweg op Merksplas 44, 2300 Turnhout, Belgium;3. Department of Orthopaedic Surgery, Orthovar, 87 Avenue Archimède, Pôle Epsilon 3, Bâtiment A. 83700 Saint Raphaël, France;1. Department of Orthopaedics, Cairns Hospital, Cairns, Queensland, Australia;2. Department of Orthopaedics, Pindara Private Hospital, Gold Coast, Queensland, Australia;3. Department of Orthopaedics, Princess Alexandra Hospital, Brisbane, Queensland, Australia;4. Orthopaedic Research Unit, Queensland University of Technology, The Prince Charles Hospital, Brisbane, Queensland, Australia;5. Department of Orthopaedics, Gold Coast University Hospital, Gold Coast, Queensland, Australia;1. Department of Orthopedic Surgery, Kyoto Katsura Hospital, Japan;2. Department of Orthopaedic Surgery, Kyoto Shimogamo Hospital, Japan;3. Department of Orthopaedic Surgery, Faculty of Medicine, Kyoto University, Japan;1. Department of Orthopaedic Surgery, Hôpital Pierre-Paul Riquet, Toulouse, 31059, France;2. Department of Medical Imaging, Hôpital Pierre-Paul Riquet, Toulouse, 31059, France;3. I2R, Institut de Recherche Riquet, Toulouse, 31059, France;1. Department of Orthopaedic Surgery, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan;2. Graduate School of Global and Transdisciplinary Studies, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan;3. Keio University Hospital Clinical and Translational Research Center, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;4. Center for Preventive Medical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan;1. Laboratory of Neuromechanics, Universidade Federal do Pampa #97500-970, Campus Uruguaiana, Uruguaiana, Brazil;2. Carrera de Kinesiología, Departamento de Cs. de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile #7820244, Santiago, Chile;3. Clinica MEDS, Santiago #7691236, Santiago, Chile;4. Centro de Salud Deportiva, Clinica Santa Maria, Santiago #7520380, Santiago, Chile;6. Department of Trauma and Orthopaedic Surgery, Princess Royal Hospital, Shrewsbury and Telford Hospital NHS Trust #TF16TF, Shropshire, UK;7. Traumatologia, Facultad de Medicina, Instituto Traumatológico-Universidad de Chile, Universidad de Chile, Santiago #8340220, Chile;8. Interno de Medicina, Facultad de Medicina #8340220, Universidad de Chile, Santiago, Chile
Abstract:BackgroundSplay of the forefoot reflects the loss of tension in the soft tissues and indicates failure of the biomechanics of the tie-bar system. By identifying and quantifying the soft tissue structures involved in the destruction of forefoot stability we could increase the understanding of forefoot pathologies.MethodsWe investigated the transverse forefoot laxity on healthy feet, feet with forefoot pathology and cadaveric feet undergoing sequential dissection.ResultsStatistical difference in transverse laxity was seen between healthy feet (n = 160) and feet with symptomatic forefoot pathology requiring surgery (n = 29). Presence of lesser ray pathology is associated with increased transverse laxity.For the dissected cadaveric feet (n = 9) sequential sectioning the plantar plate causes a progressive evolution of transverse laxity. The repair of plantar plates greatly improves transverse stability.ConclusionsForefoot pathology causes increased transverse laxity. In case of a major transverse laxity of the forefoot a plantar plate lesion should be suspected.
Keywords:Transverse laxity  Hallux valgus  Plantar plate  Tie-bar system  Biotensegrity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号