首页 | 本学科首页   官方微博 | 高级检索  
检索        


The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding
Authors:Melchels Ferry P W  Tonnarelli Beatrice  Olivares Andy L  Martin Ivan  Lacroix Damien  Feijen Jan  Wendt David J  Grijpma Dirk W
Institution:MIRA Institute for Biomedical Technology and Technical Medicine, Department of Polymer Chemistry and Biomaterials, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
Abstract:In natural tissues, the extracellular matrix composition, cell density and physiological properties are often non-homogeneous. Here we describe a model system, in which the distribution of cells throughout tissue engineering scaffolds after perfusion seeding can be influenced by the pore architecture of the scaffold. Two scaffold types, both with gyroid pore architectures, were designed and built by stereolithography: one with isotropic pore size (412 ± 13 μm) and porosity (62 ± 1%), and another with a gradient in pore size (250-500 μm) and porosity (35%-85%). Computational fluid flow modelling showed a uniform distribution of flow velocities and wall shear rates (15-24 s(-1)) for the isotropic architecture, and a gradient in the distribution of flow velocities and wall shear rates (12-38 s(-1)) for the other architecture. The distribution of cells throughout perfusion-seeded scaffolds was visualised by confocal microscopy. The highest densities of cells correlated with regions of the scaffolds where the pores were larger, and the fluid velocities and wall shear rates were the highest. Under the applied perfusion conditions, cell deposition is mainly determined by local wall shear stress, which, in turn, is strongly influenced by the architecture of the pore network of the scaffold.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号