首页 | 本学科首页   官方微博 | 高级检索  
检索        


VEGF165 mediates glomerular endothelial repair
Authors:Tammo Ostendorf  Uta Kunter  Frank Eitner  Anneke Loos  Heinz Regele  Dontscho Kerjaschki  Dwight D Henninger  Nebojsa Janjic  and Jürgen Floege
Institution:Division of Nephrology, Medizinische Hochschule, 30623 Hannover, Germany.
Abstract:VEGF(165), the most abundant isoform in man, is an angiogenic cytokine that also regulates vascular permeability. Its function in the renal glomerulus, where it is expressed in visceral epithelial and mesangial cells, is unknown. To assess the role of VEGF(165) in glomerular disease, we administered a novel antagonist - a high-affinity, nuclease-resistant RNA aptamer coupled to 40-kDa polyethylene glycol (PEG) - to normal rats and to rats with mesangioproliferative nephritis, passive Heymann nephritis (PHN), or puromycin aminonucleoside nephrosis (PAN). In normal rats, antagonism of VEGF(165) for 21 days failed to induce glomerular pathology or proteinuria. In rats with mesangioproliferative nephritis, the VEGF(165) aptamer (but not a sequence-scrambled control RNA or PEG alone) led to a reduction of glomerular endothelial regeneration and an increase in endothelial cell death, provoking an 8-fold increase in the frequency of glomerular microaneurysms by day 6. In contrast, early leukocyte influx and the proliferation, activation, and matrix accumulation of mesangial cells were not affected in these rats. In rats with PHN or PAN, administration of the VEGF(165) aptamer did not influence the course of proteinuria using various dosages and administration routes. These data identify VEGF(165) as a factor of central importance for endothelial cell survival and repair in glomerular disease, and point to a potentially novel way to influence the course of glomerular diseases characterized by endothelial cell damage, such as various glomerulonephritides, thrombotic microangiopathies, or renal transplant rejection.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号