首页 | 本学科首页   官方微博 | 高级检索  
     


Modulation of angiogenesis by dithiolethione-modified NSAIDs and valproic acid
Authors:Isenberg J S  Jia Y  Field L  Ridnour L A  Sparatore A  Del Soldato P  Sowers A L  Yeh G C  Moody T W  Wink D A  Ramchandran R  Roberts D D
Affiliation:Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
Abstract:BACKGROUND AND PURPOSE: Angiogenesis involves multiple signaling pathways that must be considered when developing agents to modulate pathological angiogenesis. Because both cyclooxygenase inhibitors and dithioles have demonstrated anti-angiogenic properties, we investigated the activities of a new class of anti-inflammatory drugs containing dithiolethione moieties (S-NSAIDs) and S-valproate. EXPERIMENTAL APPROACH: Anti-angiogenic activities of S-NSAIDS, S-valproate, and the respective parent compounds were assessed using umbilical vein endothelial cells, muscle and tumor tissue explant angiogenesis assays, and developmental angiogenesis in Fli:EGFP transgenic zebrafish embryos. KEY RESULTS: Dithiolethione derivatives of diclofenac, valproate, and sulindac inhibited endothelial cell proliferation and induced Ser(78) phosphorylation of hsp27, a known molecular target of anti-angiogenic signaling. The parent drugs lacked this activity, but dithiolethiones were active at comparable concentrations. Although dithiolethiones can potentially release hydrogen sulphide, NaSH did not reproduce some activities of the S-NSAIDs, indicating that the dithioles regulate angiogenesis through mechanisms other than release of H(2)S. In contrast to the parent drugs, S-NSAIDs, S-valproate, NaSH, and dithiolethiones were potent inhibitors of angiogenic responses in muscle and HT29 tumor explants assessed by 3-dimensional collagen matrix assays. Dithiolethiones and valproic acid were also potent inhibitors of developmental angiogenesis in zebrafish embryos, but the S-NSAIDs, remarkably, lacked this activity. CONCLUSIONS AND IMPLICATION: S-NSAIDs and S-valproate have potent anti-angiogenic activities mediated by their dithiole moieties. The novel properties of S-NSAIDs and S-valproate to inhibit pathological versus developmental angiogenesis suggest that these agents may have a role in cancer treatment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号