首页 | 本学科首页   官方微博 | 高级检索  
     


Fast,persistent, Ca2+-dependent K+ current controls graded electrical activity in crayfish muscle
Authors:Alfonso Araque  Washington Buño
Affiliation:(1) Instituto Cajal, CSIC, Avenida Doctor Arce 37, E-28002 Madrid, Spain
Abstract:The early outward current in opener muscle fibres of crayfish (Procambarus clarkii) was studied using the two-electrode voltage-clamp technique. This current was abolished in Ca2+-free and 5 mM Cd2+ solutions, and was blocked by extra- or intracellular tetraethylammonium, indicating that it was a Ca2+-dependent K+ current [IK(Ca)]. IK(Ca) was voltage dependent, apamin insensitive and sensitive to charybdotoxin (CTX), which, in addition to its tetraethylammonium sensitivity, suggests that the channels mediating IK(Ca) behave in a BK type manner. IK(Ca) activation was extremely fast, reaching a maximum within 5 ms, and the inactivation was incomplete, stabilizing at a persistent steady-state. IK(Ca) was insensitive to intracellular ethylenebis(oxonitrilo)tetraacetate (EGTA), but was abolished by injection of the faster Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,Nprime,Nsim'-tetraacetic acid (BAPTA), suggesting that voltage-dependent Ca2+ channels and those mediating IK(Ca) should be clustered closely on the membrane. Under two-electrode current-clamp recording mode, low amplitude, graded responses were evoked under control conditions, whereas repetitive all-or-none spikes were elicited by application of CTX or after loading the cells with BAPTA. We conclude that IK(Ca) activates extremely quickly, is persistent and is responsible for the generation and control of the low amplitude, graded, active responses of opener muscle fibres.
Keywords:Ca2+-dependent K+ current  BK channels  Charybdotoxin  EGTA  BAPTA  Graded electrical activity  Crayfish muscle
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号