首页 | 本学科首页   官方微博 | 高级检索  
检索        


Switching bipolar hepatic radiofrequency ablation using internally cooled wet electrodes: comparison with consecutive monopolar and switching monopolar modes
Authors:J H Yoon  J M Lee  S Woo  E J Hwang  I Hwang  W Choi  J K Han  B I Choi
Institution:1.Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea;2.Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
Abstract:

Objective:

To evaluate whether switching bipolar radiofrequency ablation (SB-RFA) using three internally cooled wet (ICW) electrodes can induce coagulations >5 cm in porcine livers with better efficiency than consecutive monopolar (CM) or switching monopolar (SM) modes.

Methods:

A total of 60 coagulations were made in 15 in vivo porcine livers using three 17-gauge ICW electrodes and a multichannel radiofrequency (RF) generator. RF energy (approximately 200 W) was applied in CM mode (Group A, n = 20) for 24 min, SM mode for 12 min (Group B, n = 20) or switching bipolar (SB) mode for 12 min (Group C, n = 20) in in vivo porcine livers. Thereafter, the delivered RFA energy, as well as the shape and dimension of coagulations were compared among the groups.

Results:

Spherical- or oval-shaped ablations were created in 30% (6/20), 85% (17/20) and 90% (18/20) of coagulations in the CM, SM and SB groups, respectively (p = 0.003). SB-RFA created ablations >5 cm in minimum diameter (Dmin) in 65% (13/20) of porcine livers, whereas SM- or CM-RFA created ablations >5 cm in only 25% (5/20) and 20% (4/20) of porcine livers, respectively (p = 0.03). The mean Dmin of coagulations was significantly larger in Group C than in Groups A and B (5.1 ± 0.9, 3.9 ± 1.2 and 4.4 ± 1.0 cm, respectively, p = 0.002) at a lower delivered RF energy level (76.8 ± 14.3, 120.9 ± 24.5 and 114.2 ± 18.3 kJ, respectively, p < 0.001).

Conclusion:

SB-RFA using three ICW electrodes can create coagulations >5 cm in diameter with better efficiency than do SM- or CM-RFA.

Advances in knowledge:

SB-RFA can create large, regular ablation zones with better time–energy efficiency than do CM- or SM-RFA.Radiofrequency (RF) tumour ablation is increasingly being utilized as an alternative option in patients with unresectable primary and secondary liver malignancies.1,2 In the treatment of small hepatocellular carcinomas (HCCs), RF ablation (RFA) has been shown to yield satisfactory local tumour control, with one study pathologically demonstrating complete tumour necrosis in 83% of HCCs <3 cm.3 Indeed, according to the recent Barcelona Clinic Liver Cancer staging and treatment strategy guidelines for HCCs, RFA is favoured over surgical resection for very early stage HCCs (single nodule <2 cm) in patients with Child–Pugh A liver cirrhosis.4 Furthermore, a recent systematic review paper by Cucchetti et al5 reported that for very early HCCs (single nodule <2 cm) in Child–Pugh Class A patients, RFA provided similar life expectancy and quality-adjusted life expectancy at a lower cost than did surgical resection.However, for single HCCs 3–5 cm in diameter, resection was shown to provide better life expectancy and to be more cost effective than RFA owing to high local tumour progression rates after RFA.512 This is in large part owing to the limited ability of currently available RFA devices in creating a sufficiently large ablation zone encompassing HCCs 3–5 cm in diameter along with a safety margin.7,11,13,14 Therefore, an ideal RFA system would provide the capability to create coagulations >5 cm in short-axis diameter within a reasonable time frame (<30 min) for the treatment of tumours >3 cm in diameter considering a sufficient safety margin (5–10 mm in thickness). Currently, multiple overlapping ablations are often used for the treatment of liver tumours >2 cm in order to cover the complete tumour volume as well as to create a 1-cm-thick peripheral ablation margin.15,16 However, there is considerable technical difficulty in probe repositioning during overlapping ablations, especially under ultrasound guidance, owing to gas bubble formations, ultimately resulting in incomplete ablations.1719Recently, multiple-electrode RFA approaches, including the switching monopolar (SM) mode, bipolar mode and multipolar mode, have been attempted with each demonstrating efficiency in creating a larger ablation zone in liver tissue than in the standard monopolar RF technique.2,2026 Theoretically, RFA in switching bipolar (SB) mode using multiple electrodes should further improve the thermal and electronic efficiency of RFA devices compared to conventional monopolar modes. However, until now, the efficacy of SB-RFA with internally cooled wet (ICW) electrodes, which allow simultaneous internal cooling and saline infusion, in creating 3- to 5-cm coagulation areas, have not been tested in previous in vivo studies.Therefore, the purpose of this study was to evaluate whether SB-RFA using three ICW electrodes can induce coagulations >5 cm in diameter in porcine livers with better efficiency than consecutive monopolar (CM) or SM mode.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号