首页 | 本学科首页   官方微博 | 高级检索  
     


Recombinant vascular basement-membrane-derived multifunctional peptide inhibits angiogenesis and growth of hepatocellular carcinoma
Authors:You-Hua Wu  Jian-Guo Cao  Hong-Lin Xiang  Hong Xia  Yong Qin  AJi Huang  Di Xiao  Fang Xu
Affiliation:1. Department of Oncology, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
2. Laboratory of Medicine Engineering, Medical College, Hunan Normal University, Changsha 410006, Hunan Province, China
3. Institute of Cancer Research, University of South China, Hengyang 421001, Hunan Province, China
4. The Second Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
Abstract:AIM: To investigate the anti-angiogenic and antitumor activities of recombinant vascular basement membrane-derived multifunctional peptide (rVBMDMP) in hepatocellular carcinoma (HCC). METHODS: HepG2, Bel-7402, Hep-3B, HUVE-12 and L-02 cell lines were cultured in vitro and the inhibitory effect of rVBMDMP on proliferation of cells was detected by MTT assay. The in vivo antitumor efficacy of rVBMDMP on HCC was assessed by HepG2 xenografts in nude mice. Distribution of rVBMDMP, mechanism by which the growth of HepG2 xenografts is inhibited, and microvessel area were observed by proliferating cell nuclear antigen (PCNA) and CD31 immunohistochemistry. RESULTS: MTT assay showed that rVBMDMP markedly inhibited the proliferation of human HCC (HepG2, Bel-7402, Hep-3B) cells and human umbilical vein endothelial (HUVE-12) cells in a dose-dependent manner, with little effect on the growth of L-02 cells. When the IC50 was 4.68, 7.65, 8.96, 11.65 and 64.82 μmol/L, respectively, the potency of rVBMDMP to HepG2 cells was similar to 5-fluorouracil (5-FU) with an IC50 of 4.59 μmol/L. The selective index of cytotoxicity to HepG2 cells of rVBMDMP was 13.8 (64.82/4.68), which was higher than that of 5-FU [SI was 1.9 (8.94/4.59)]. The VEGF-targeted recombinant humanized monoclonal antibody bevacizumab (100 mg/L) did not affect the proliferation of HepG2, Bel-7402, Hep-3B and L-02 cells, but the growth inhibitory rate of bevacizumab (100 mg/L) to HUVE-12 cells was 87.6% ± 8.2%. Alternis diebus intraperitoneal injection of rVBMDMP suppressed the growth of HepG2 xenografts in a dose-dependent manner. RVBMDMP (1, 3, 10 mg/kg) decreased the tumor weight by 12.6%, 55.9% and 79.7%, respectively, compared with the vehicle control. Immunohistochemical staining of rVBMDMP showed that the positive area rates (2.2% ± 0.73%, 4.5% ± 1.3% and 11.5% ± 3.8%) in rVBMDMP treated group (1, 3, 10 mg/kg) were significantly higher than that (0.13% ± 0.04%) in the control group ( P < 0.01). The positive area rates (19.0% ± 5.7%, 12.2% ± 3.5% and 5.2% ± 1.6% ) of PCNA in rVBMDMP treated group (1, 3, 10 mg/kg) were significantly lower than that (29.5% ± 9.4%) in the control group ( P < 0.05). rVBMDMP at doses of 1, 3 and 10 mg/kg significantly reduced the tumor microvessel area levels (0.26% ± 0.07%, 0.12% ± 0.03% and 0.05% ± 0.01% vs 0.45% ± 0.15%) in HepG2 xenografts ( P < 0.01), as assessed by CD31 staining. CONCLUSION: rVBMDMP has effective and unique anti-tumor properties, and is a promising candidate for the development of anti-tumor drugs.
Keywords:Hepatocellular carcinoma  Recombinant vascular basement membrane-derived multifunctional peptide  Proliferating cell nuclear antigen  CD31  Therapeutic action
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《World journal of gastroenterology : WJG》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号