首页 | 本学科首页   官方微博 | 高级检索  
检索        


Adrenaline potentiates insulin-stimulated PKB activation in the rat fast-twitch epitrochlearis muscle without affecting IRS-1-associated PI 3-kinase activity
Authors:Jørgen Jensen  Line M Grønning-Wang  Einar Jebens  Jonathan P Whitehead  Robert Zorec  Peter R Shepherd
Institution:Department of Physiology, National Institute of Occupational Health, P.O. Box 8149 Dep., Oslo, 0033, Norway, jorgen.jensen@stami.no.
Abstract:We have previously shown in the rat slow-twitch soleus muscle that adrenaline greatly potentiates insulin-stimulated protein kinase B (PKB) phosphorylation without having an effect alone. However, insulin signalling capacity through the PKB pathway is higher in soleus than in fast-twitch muscles, whereas adrenaline activates phosphorylase more strongly in epitrochlearis. Therefore, the aim of the present study was to investigate the interaction between adrenaline and insulin signalling in the fast-twitch epitrochlearis muscle. Insulin increased insulin receptor substrate-1 (IRS-1)-associated phosphoinositide (PI) 3-kinase activity threefold, and adrenaline did not influence basal or insulin-stimulated PI 3-kinase activity. Insulin but not adrenaline increased PKB activity and phosphorylation of Ser(473) and Thr(308). It is interesting to note that adrenaline potentiated insulin-stimulated PKB activity and PKB Ser(473) and Thr(308) phosphorylation. These effects were mimicked by dibutyryl-cyclic adenosine monophosphate (db-cAMP). Adrenaline and db-cAMP increased glycogen synthase kinase (GSK)-3beta Ser(9) phosphorylation independently of PKB activation and enhanced insulin-stimulated GSK-3beta Ser(9) phosphorylation. Although adrenaline increased GSK-3 phosphorylation (inhibiting activity), phosphorylation of its target sites on glycogen synthase was increased, and adrenaline blocked insulin-stimulated glycogen synthase dephosphorylation of Ser(641) and Ser(645,649,653,657), glycogen synthase activation and glycogen synthesis. Insulin-stimulated glucose transport was not influenced by adrenaline despite the increased PKB activation. In conclusion, as in the slow-twitch soleus muscle, adrenaline potentiates insulin-stimulated PKB activation in the fast-twitch glycolytic epitrochlearis muscle without increasing IRS-1-associated PI 3-kinase activity. Furthermore, adrenaline induces phosphorylation of a pool of GSK-3 that is not involved in the regulation of glycogen metabolism. These results indicate that the combination of adrenaline and insulin may activate novel signalling molecules rather than just summing up their effects on linear pathways.
Keywords:Glycogen synthase  Glucose transport  cAMP
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号