首页 | 本学科首页   官方微博 | 高级检索  
     


Biological assessment of the bone-screw interface after insertion of uncoated and hydroxyapatite-coated pedicular screws in the osteopenic sheep
Authors:Fini M  Giavaresi G  Greggi T  Martini L  Aldini N Nicoli  Parisini P  Giardino R
Affiliation:Experimental Surgery Department, Research Institute Codivilla-Putti, Rizzoli Orthopaedic Institute, via di Barbiano, 1/10, 40136 Bologna, Italy. milena.fini@ior.it
Abstract:The sheep seems to be a promising model of osteoporosis and biomaterial osteointegration in osteopenic bone. The long-term ovariectomized sheep model was used for the biological investigation of bone healing around uncoated and hydroxyapatite (HA)-coated pedicle screws in osteopenic bone. Four sheep were ovariectomized and four sheep were sham-operated. Twenty-four months after surgery, the animals were implanted with uncoated and HA-coated stainless steel screws in the lumbar vertebral pedicles. Four months later, bone-to-implant contact, bone ingrowth, and bone hardness were measured around screws. Uncoated stainless steel presented significantly (p < 0.0005) lower bone-to-implant contact in healthy and osteopenic bone compared with HA-coated stainless steel. HA significantly improved bone ingrowth in healthy bone (p < 0.05) compared with uncoated stainless steel. Osteopenia significantly (p < 0.05) reduced the area of bone ingrowth around the screw threads for both types of implants. In the inner thread area, bone microhardness significantly increased (p < 0.05) in HA-coated surface versus uncoated for healthy and osteopenic bone. HA coating significantly enhances bone-to-implant contact also in osteopenic bone in comparison with uncoated stainless steel surfaces. Bone ingrowth and mineralization are ameliorated by the osteoconductive HA coating. However, osteopenia seems to greatly influence bone ingrowth processes around the implanted screws regardless of the characteristics of the material surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号