Hippocampal cholinergic alterations and related behavioral deficits after early exposure to phenobarbital. |
| |
Authors: | Y Rogel-Fuchs M E Newman D Trombka E A Zahalka J Yanai |
| |
Affiliation: | Melvin A. and Eleanor Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Embryology, Hebrew University-Hadassah Medical School, Jerusalem, Israel. |
| |
Abstract: | Mice were exposed to phenobarbital (PhB) prenatally and neonatally. Prenatal exposure was accomplished by feeding the mother PhB (3 g/kg milled food) on gestation days 9-18. Neonatal exposure was accomplished by daily injections of 50 mg/kg sodium PhB directly to the pups on days 2-21. Long-term biochemical alterations in the pre- and postsynaptic septohippocampal system, as well as related behavioral deficits, were assessed in the treated animals. Significant increase in B(max) values for binding of [3H]QNB to muscarinic cholinergic receptors was obtained on both ages 22 and 50 in prenatally (40-90%, respectively, p less than 0.001) and neonatally exposed (58-89%, p less than 0.001) mice whereas Kd remained normal. Similarly, a significant increase of inositol phosphate (IP) formation in response to carbachol was found after both prenatal and neonatal exposure to PhB (p less than 0.05). No alterations in choline acetyltransferase (ChAT) activity were observed in the prenatally or neonatally treated animals. The early exposed mice showed deficits in the performance in Morris water maze, a behavior related to the septohippocampal pathway. The results suggest that early exposure to PhB induces alterations in postsynaptic components of the hippocampal cholinergic system and concomitantly to impairment in hippocampus-related behavior. |
| |
Keywords: | |
|
|