Lack of interleukin-17 leads to a modulated micro-environment and amelioration of mechanical hypersensitivity after peripheral nerve injury in mice |
| |
Authors: | Yuan-Ji Day Jiin-Tarng Liou Chiou-Mei Lee Yi-Chiao Lin Chih-Chieh Mao An-Hsun Chou Chia-Chih Liao Hung-Chen Lee |
| |
Affiliation: | 1. Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC;2. Transgenic & Molecular Immunogenetics Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC;3. Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC;4. Department of Medicine, Chang Gung University, Linkou, Taiwan, ROC;5. Graduate Institutes of Clinical Medical Sciences, Chang Gung University, Linkou, Taiwan, ROC;6. Department of Anesthesiology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC |
| |
Abstract: | Interleukin-17 (IL-17) is involved in a wide range of inflammatory disorders and in recruitment of inflammatory cells to injury sites. A recent study of IL-17 knock-out mice revealed that IL-17 contributes to neuroinflammation and neuropathic pain after peripheral nerve injury. Surprisingly, little is known of micro-environment modulation by IL-17 in injured sites and in pathologically related neuroinflammation and chronic neuropathic pain. Therefore, we investigated nociceptive sensitization, immune cell infiltration, myeloperoxidase (MPO) activity, and expression of multiple cytokines and opioid peptides in damaged nerves of wild-type (IL-17+/+) and IL-17 knock-out (IL-17−/−) mice after partial sciatic nerve ligation. Our results demonstrated that the IL-17−/− mice had less behavioral hypersensitivity after partial sciatic nerve ligation, and inflammatory cell infiltration and pro-inflammatory cytokine (tumor necrosis factor–α, IL-6, and interferon-γ) levels in damaged nerves were significantly decreased, with the levels of anti-inflammatory cytokines IL-10 and IL-13, and expressions of enkephalin, β-endorphin, and dynorphin were also decreased compared to those in wild-type control mice. In conclusion, we provided evidence that IL-17 modulates the micro-environment at the level of the peripheral injured nerve site and regulates progression of behavioral hypersensitivity in a murine chronic neuropathic pain model. The attenuated behavioral hypersensitivity in IL-17−/− mice could be a result of decreased inflammatory cell infiltration to the injured site, resulting in modulation of the pro- and anti-inflammatory cytokine milieu within the injured nerve. Therefore, IL-17 may be a critical component for neuropathic pain pathogenesis and a novel target for therapeutic intervention for this and other chronic pain states. |
| |
Keywords: | Neuropathic pain Interleukin-17 Inflammation Nerve injury Animal model |
本文献已被 ScienceDirect 等数据库收录! |
|