首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of capsaicin application on the skin during resting exposure to temperate and warm conditions
Authors:Petros G Botonis  Panagiotis G Miliotis  Stylianos N Kounalakis  Maria D Koskolou  Nickos D Geladas
Abstract:We investigated thermoregulatory and cardiovascular responses at rest in a temperate (20°C) and in a warm (30°C) environment (40% RH) without and with the application of capsaicin on the skin. We hypothesized that regardless of environmental temperature, capsaicin application would stimulate heat loss and concomitantly deactivate heat conservation mechanisms, thus resulting in rectal temperature (Tre) and mean blood pressure decline due to excitation of heat‐sensitive TRPV1. Ten male subjects were exposed, while seated, for 30 minutes to 20.8 ± 1.0°C or to 30.6 ± 1.1°C: without (NCA) and with (CA) application of capsaicin patches on the skin. Thermoregulatory (Tre, proximal‐distal skin temperature gradient) and cardiovascular variables (modelflow technique) as well as oxygen uptake were continuously measured. The area under the curve for Tre decline at 20°C was smaller in CA (?2.1 ± 1.3 a.u.) than in NCA (?0.6 ± 1.1 a.u., P < 0.01, r = 0.8). Likewise, at 30°C it was smaller in CA (?2.2 ± 2.1 a.u.) compared to NCA (?0.8 ± 2.0 a.u., P = 0.02, r = 0.7). Local vasomotor tone and oxygen uptake, were significantly lower by 36.7% ± 94.2% and 12.3% ± 12.3%, respectively, with capsaicin compared to NCA (P = 0.05 and P < 0.01, respectively). Additionally, in 30°C CA mean arterial pressure was lower by 10.7% ± 5.9%, 8.9% ± 5.9%, and 10.6% ± 7.0% compared to 30°C NCA, 20°C NCA, and 20°C CA, respectively (P < 0.01, P = 0.02, and P < 0.01, respectively, d = 1.4‐1.8). In conclusion, capsaicin application on the skin induced vasodilation and Tre decline. At 30°C CA, thermal responses were accompanied by arterial hypotension most likely due to the interactive effects of both stressors (warm environment and capsaicin) on cutaneous vascular regulation.
Keywords:core temperature  skin warm sensors  temperature and vascular regulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号