Response of the charophyte Nitellopsis obtusa to heavy metals at the cellular,cell membrane,and enzyme levels |
| |
Authors: | Manusadzianas Levonas Maksimov Gemir Darginaviciene Jūrate Jurkoniene Sigita Sadauskas Kazys Vitkus Rimantas |
| |
Affiliation: | Institute of Botany, Z. Ezeru 47, Vilnius 2021, Lithuania. levonas@botanika.lt |
| |
Abstract: | The responses of the freshwater macroalga Nitellopsis obtusa to heavy metal (HM) salts of Hg, Cd, Co, Cu, Cr, and Ni were assessed at different levels: whole-cell mortality (96-h LC(50)), in vivo cell membrane (45-min depolarization of resting potential, EC(50)), and enzyme in plasma membrane preparations (K+, Mg2+-specific H+-ATPase inhibition, IC(50)). To measure ATPase activity, a novel procedure for isolation of plasma membrane-enriched vesicles from charophyte cells was developed. The short-term ATPase inhibition assay (IC(50) from 6.0 x 10(-7) to 4.6 x 10(-4) M) was slightly more sensitive than the cell mortality test (LC(50) from 1.1 x 10(-6) to 2.6 x 10(-3) M), and the electrophysiological test with the end point of 45-min depolarization of resting potential was characterized by less sensitivity for HMs (EC(50) from 1.1 x 10(-4) to 2.2 x 10(-2) M). The variability of IC(50) values assessed for HMs in the ATPase assays was close to that of LC(50) values in the mortality tests (CVs from 33.5 to 83.5 and from 12.4% to 57.7%, respectively), whereas the EC(50) values in the electrophysiological tests were characterized by CVs generally below 30%. All three end points identified two separate HM groups according to their toxicity to N. obtusa: Co, Ni, and Cr comprised a group of less toxic metals, whereas Hg, Cu, and Cd comprised a group of more toxic metals. However, the adverse effects within each group were discriminated differently. For example, the maximum difference between the highest and lowest LC(50) for the group of less toxic metals in the long-term mortality test was approximately 60% of the response range, whereas the corresponding difference in IC(50) values in the ATPase assay was 30%. In contrast, the LC(50) values of the more toxic metals occupied only 10% of the response range, whereas the IC(50) values were spread over 70%. Further investigation should be done of the underlying mechanism or mechanisms responsible for the observed differences in the dynamic range of a particular end point of the groups of toxicants of varying strength. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|