首页 | 本学科首页   官方微博 | 高级检索  
检索        


In vitro-in vivo evaluation of supercritical processed solid dispersions: permeability and viability assessment in Caco-2 cells
Authors:Sethia Sundeep  Squillante Emilio
Institution:College of Pharmacy and Allied Health Professions, St. John's University, 8000 Utopia Parkway, Jamaica, New York 11439, USA. squillae@stjohns.edu
Abstract:In this study improvement in the bioavailability of carbamazepine (CBZ) prepared as solid dispersions by conventional solvent evaporation and supercritical fluid (SCF) processing methods was assessed, along with the elucidation of the mechanism of improved absorption. Solid dispersions of CBZ in polyethylene glycol (PEG) with either Gelucire 44/14 or vitamin E-TPGS (TPGS) were evaluated by intrinsic dissolution. Directional transport through Caco-2 cell monolayers was determined in the presence and absence of TPGS. Cell viability in presence of various concentrations of amphiphilic carriers was seen. In vivo oral bioavailability was determined in rats. The apparent intrinsic dissolution rates (IDR) of both conventional- and SCF-CBZ/PEG 8000/TPGS solid dispersions were increased by 13- and 10.6-fold, respectively, relative to neat CBZ. CBZ was not a substrate of P-glycoprotein. Higher CBZ permeability was seen in presence of 0.1% TPGS. Cell viability studies showed significant cytotoxicity only at or above 0.1% amphiphilic carrier. Supercritical treated formulation (without amphiphilic carrier) displayed oral bioavailability on par with those conventional solid dispersions augmented with amphiphilic carriers. An in vitro-in vivo correlation was seen between IDR and the AUC of the various CBZ solid dispersions. Bioavailability of CBZ was more a function of dissolution as opposed to membrane effects. Although bioavailability from SCF processed dispersions was better than conventionally processed counterparts (except for one formulation containing Gelucire 44/14), an interaction of processing method and inclusion of an amphiphilic carrier, rather by one factor alone contributed to optimal absorption, thus giving contradictory results for Gelucire 44/14 and TPGS formulations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号