首页 | 本学科首页   官方微博 | 高级检索  
检索        


Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor
Authors:Glueckert Rudolf  Bitsche Mario  Miller Josef M  Zhu Yaying  Prieskorn Diane M  Altschuler Richard A  Schrott-Fischer Anneliese
Institution:Department of Otolaryngology, Medical University of Innsbruck, A-6020 Innsbruck, Austria.
Abstract:Deafferentation of the auditory nerve from loss of sensory cells is associated with degeneration of nerve fibers and spiral ganglion neurons (SGN). SGN survival following deafferentation can be enhanced by application of neurotrophic factors (NTF), and NTF can induce the regrowth of SGN peripheral processes. Cochlear prostheses could provide targets for regrowth of afferent peripheral processes, enhancing neural integration of the implant, decreasing stimulation thresholds, and increasing specificity of stimulation. The present study analyzed distribution of afferent and efferent nerve fibers following deafness in guinea pigs using specific markers (parvalbumin for afferents, synaptophysin for efferent fibers) and the effect of brain derived neurotrophic factor (BDNF) in combination with acidic fibroblast growth factor (aFGF). Immediate treatment following deafness was compared with 3-week-delayed NTF treatment. Histology of the cochlea with immunohistochemical techniques allowed quantitative analysis of neuron and axonal changes. Effects of NTF were assessed at the light and electron microscopic levels. Chronic BDNF/aFGF resulted in a significantly increased number of afferent peripheral processes in both immediate- and delayed-treatment groups. Outgrowth of afferent nerve fibers into the scala tympani were observed, and SGN densities were found to be higher than in normal hearing animals. These new SGN might have developed from endogenous progenitor/stem cells, recently reported in human and mouse cochlea, under these experimental conditions of deafferentation-induced stress and NTF treatment. NTF treatment provided no enhanced maintenance of efferent fibers, although some synaptophysin-positive fibers were detected at atypical sites, suggesting some sprouting of efferent fibers.
Keywords:cochlea  nerve fiber regeneration  brain‐derived neurotrophic factor  acidic fibroblast growth factor
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号