Quantitative neuropathological study of Alzheimer-type pathology in the hippocampus: comparison of senile dementia of Alzheimer type, senile dementia of Lewy body type, Parkinson's disease and non-demented elderly control patients. |
| |
Authors: | P Ince D Irving F MacArthur R H Perry |
| |
Affiliation: | MCR Neurochemical Pathology Unit, Newcastle General Hospital, U.K. |
| |
Abstract: | A Lewy body dementing syndrome in the elderly has been recently described and designated senile dementia of Lewy body type (SDLT) on the basis of a distinct clinicopathological profile. The pathological changes seen in SDLT include the presence of cortical Lewy bodies (LB) frequently, but not invariably, associated with senile plaque (SP) formation. Whilst neocortical neurofibrillary tangles (NFT) are sparse or absent, a proportion of these cases show involvement of the temporal archicortex by lesions comprising Alzheimer-type pathology (ATP, i.e. NFT, SP and granulovacuolar degeneration [GVD]). Thus the relationship between SDLT and senile dementia of Alzheimer type (SDAT) is complex and controversial. In this study quantitative neuropathology was used to compare the intensity and distribution of ATP in the hippocampus and entorhinal cortex of 53 patients from 3 disease groups (SDLT, SDAT, Parkinson's disease (PD)) and a group of neurologically and mentally normal elderly control patients. For most brain areas examined the extent of ATP between the patient groups followed the trend SDAT greater than SDLT greater than PD greater than control. Statistical comparison of these groups revealed significant differences between the mean densities of NFT, SP and GVD although individual cases showed considerable variability. These results confirm additional pathological differences between SDAT and SDLT regarding the intensity of involvement of the temporal archicortex by ATP. Many patients with Lewy body disorders (LBdis) show a predisposition to develop ATP albeit in a more restricted distribution (e.g. low or absent neocortical NFT) and at lower densities than is found in SDAT. Some cases of SDLT show minimal SP and NFT formation in both neocortex and archicortex supporting previously published data distinguishing this group from Alzheimer's disease. |
| |
Keywords: | |
|
|