首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis,biological activity and conformational analysis of cyclic GRF analogs
Authors:ARTHUR M. FELIX  EDGAR P. HEIMER  CHING-TSO WANG  THEODORE J. LAMBROS  ALAIN FOURNIER  THOMAS F. MOWLES  SARAH MAINES  ROBERT M. CAMPBELL  BOGDA B. WEGRZYNSKI  VOLDEMAR TOOME  DAVID FRY  VINCENT S. MADISON
Abstract:A novel cyclic GRF analog, cyclo(Asp8-Lys12)-[Asp8,Ala15]-GRF(1-29)-NH2, i.e. cyclo8.12[Asp8,Ala15]-GRF(1-29)-NH2, was synthesized by the solid phase procedure and found to retain significant biological activity. Solid phase cyclization of Asp8 to Lys12 proceeded rapidly (~2h) using the BOP reagent. Substitution of Ala12 with d -Ala2 and/or NH2-terminal replacement (desNH2-Tyr1 or N-MeTyr1) in the cyclo8.12[Asp8,Ala15]-GRF(1-29)-NH2 system resulted in highly potent analogs that were also active in vivo. Conformational analysis (circular dichroism and molecular dynamics calculations based on NOE-derived distance constraints) demonstrated that cyclo8.12[Asp8,Ala15]-GRF(1-29)-NH2 contains a long α-helical segment even in aqueous solution. A series of cyclo8.12 stereoisomers containing d -Asp8 and/or d -Lys12 were prepared and also found to be highly potent and to retain significant α-helical conformation. The high biological activity of cyclo8.12[N-MeTyr1,d -Ala2,Asp8,Ala15]-GRF(1-29)-NH2 may be explained on the basis of retention of a preferred bioactive conformation.
Keywords:conformational analysis of peptides  cyclization of peptides  growth hormone releasing factor  solid phase peptide synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号