External validation and comparison of magnetic resonance imaging-based predictive models for clinically significant prostate cancer |
| |
Affiliation: | 1. Department of Urology, Singapore General Hospital, Singapore;2. Department of Diagnostic Radiology, Singapore General Hospital, Singapore;3. Department of Urology, Sengkang General Hospital, Singapore |
| |
Abstract: | PurposeSeveral multiparametric magnetic resonance imaging (mpMRI)-based models have been developed with significant improvements in diagnostic accuracy for clinically significant prostate cancer (csCaP), but lack proper external validation. We therefore sought to externally validate and compare all published mpMRI-based csCaP risk prediction models in an independent Asian population.Patients and MethodsA total of 449 men undergoing combined transperineal fusion-targeted/systematic prostate biopsy at our specialist center between 2015 to 2019 were retrospectively analyzed. csCaP was defined as lesions with ISUP (International Society of Urological Pathology) grade group ≥2. The performance of 6 mpMRI-based risk models (MRI-ERSPC-3/4, Distler, Radtke, Mehralivand, van Leeuwen and He) were evaluated in terms of discrimination, calibration and clinical utility, using area under the receiver operating characteristic curve (AUC), calibration curves and decision curve analyses.ResultsA total of 202 (45%) subjects were diagnosed with csCaP. All models demonstrated excellent accuracy with AUCs ranging from 0.75 to 0.86, and most significantly outperformed mpMRI PIRADSv2.0 (Prostate Imaging Reporting and Data System version 2.0) alone. The models by Mehralivand and He showed good calibration to our validation population, with respective intercepts of -0.08 and -0.84. All models were nevertheless recalibrated to the csCaP prevalence in our population for analysis. Decision curve analysis showed that above a threshold probability of 10%, all mpMRI-based models demonstrated superior net benefit compared to mpMRI PIRADSv2.0 or a biopsy-all-men strategy. The van Leeuwen model had the greatest net benefit, avoiding 39% of unnecessary biopsies while missing only 4% of csCaP, at a threshold probability of 15%.ConclusionsThe mpMRI-based risk models demonstrate excellent discrimination and clinical utility and are easy to apply in practice, suggesting that individualized risk-based approaches can be considered over mpMRI alone to avoid unnecessary biopsies. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|