首页 | 本学科首页   官方微博 | 高级检索  
     


Axo-somatic inhibition of projection neurons in the lateral nucleus of amygdala in human temporal lobe epilepsy: an ultrastructural study
Authors:Deniz M. Yilmazer-Hanke  Heidrun Faber-Zuschratter  Ingmar Blümcke  Melanie Bickel  Albert Becker  Christian Mawrin  Johannes Schramm
Affiliation:Institute of Anatomy, University of Magdeburg, Magdeburg, Germany. D.Yilmazer-Hanke@ucc.ie
Abstract:Here, we report ultrastructural alterations in the synaptic circuitry of the human amygdala related to neuronal cell densities in surgical specimens of patients suffering from temporal lobe epilepsy (TLE). The neuronal cell densities quantified in the basolateral complex of amygdala were significantly reduced only in the lateral nucleus (LA) of TLE patients as compared to autopsy or non-Ammon’s horn sclerosis (AHS) controls (Nissl staining, immunostaining against the neuronal marker NeuN). For this reason, we focussed on the LA to perform a more detailed quantitative ultrastructural analysis, which revealed an inverse correlation between the number of axo-somatic inhibitory synaptic profiles at the somata of glutamic acid decarboxylase (GAD)-negative projection neurons and the extent of perisomatic fibrillary gliosis. In contrast, the density of GAD-immunoreactive interneurons positively correlated with the number of axo-somatic inhibitory synaptic profiles. The fibrillary material in perisomatic glial cell processes was preferentially labeled by the astroglial marker S100B. In addition, a qualitative study of the dendrites of GAD- and parvalbumin (PARV)-containing interneurons showed that they were often contacted by asymmetrical excitatory synapses. Our results are in line with anatomical data from rodents and cats, which show that amygdalar interneurons form axo-somatic inhibitory synapses on GAD-negative projection neurons, whereas the interneurons themselves receive excitatory input from recurrent collaterals of projection neurons and from cortico- and thalamo-amygdalar afferents. The structural reorganization patterns observed in the GABAergic circuitry are compatible with a reduced feedback or feed forward inhibition of amygdalar projection neurons in human TLE.
Keywords:Chandelier cell  Phasic inhibition  Feed forward inhibition  Feedback inhibition  S100beta  Astroglia
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号