首页 | 本学科首页   官方微博 | 高级检索  
检索        


Quercetin and its principal metabolites, but not myricetin, oppose lipopolysaccharide-induced hyporesponsiveness of the porcine isolated coronary artery
Authors:Al-Shalmani Salmin  Suri Sunita  Hughes David A  Kroon Paul A  Needs Paul W  Taylor Moira A  Tribolo Sandra  Wilson Vincent G
Institution:1School of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK;2Institute of Food Research, Norwich Research Park, Colney, Norwich, UK
Abstract:

BACKGROUND AND PURPOSE

Quercetin is anti-inflammatory in macrophages by inhibiting lipopolysaccharide (LPS)-mediated increases in cytokine and nitric oxide production but there is little information regarding the corresponding effect on the vasculature. We have examined the effect of quercetin, and its principal human metabolites, on inflammatory changes in the porcine isolated coronary artery.

EXPERIMENTAL APPROACH

Porcine coronary artery segments were incubated overnight at 37°C in modified Krebs-Henseleit solution with or without 1 µg·mL?1 LPS. Some segments were also co-incubated with quercetin-related flavonoids or Bay 11-7082, an inhibitor of NFκB. Changes in isometric tension of segments to vasoconstrictor and vasodilator agents were recorded. Nitrite content of the incubation solution was estimated using the Griess reaction, while inducible nitric oxide synthase was identified immunohistochemically.

KEY RESULTS

Lipopolysaccharide reduced, by 35–50%, maximal contractions to KCl and U46619, thromboxane A2 receptor agonist, and impaired endothelium-dependent relaxations to substance P. Nitrite content of the incubation medium increased 3- to 10-fold following exposure to LPS and inducible nitric oxide synthase was detected in the adventitia. Quercetin (0.1–10 µM) opposed LPS-induced changes in vascular responses, nitrite production and expression of inducible nitric oxide synthase. Similarly, 10 µM Bay 11-7082, 10 µM quercetin 3′-sulphate and 10 µM quercetin 3-glucuronide prevented LPS-induced changes, while myricetin (10 µM) was inactive. Myricetin (10 µM) prevented quercetin-induced modulation of LPS-mediated nitrite production.

CONCLUSION AND IMPLICATIONS

Quercetin, quercetin 3′-suphate and quercetin 3-glucuronide, exerted anti-inflammatory effects on the vasculature, possibly through a mechanism involving inhibition of NFκB. Myricetin-induced antagonism of the effect of anti-inflammatory action of quercetin merits further investigation.
Keywords:quercetin  quercetin sulphate  quercetin glucuronide  myricetin  porcine coronary artery  lipopolysaccharide  nitric oxide  CD31
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号