首页 | 本学科首页   官方微博 | 高级检索  
检索        


A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium
Authors:Kraja Aldi T  Vaidya Dhananjay  Pankow James S  Goodarzi Mark O  Assimes Themistocles L  Kullo Iftikhar J  Sovio Ulla  Mathias Rasika A  Sun Yan V  Franceschini Nora  Absher Devin  Li Guo  Zhang Qunyuan  Feitosa Mary F  Glazer Nicole L  Haritunians Talin  Hartikainen Anna-Liisa  Knowles Joshua W  North Kari E  Iribarren Carlos  Kral Brian  Yanek Lisa  O'Reilly Paul F  McCarthy Mark I  Jaquish Cashell  Couper David J  Chakravarti Aravinda  Psaty Bruce M  Becker Lewis C  Province Michael A  Boerwinkle Eric  Quertermous Thomas  Palotie Leena  Jarvelin Marjo-Riitta  Becker Diane M  Kardia Sharon L R  Rotter Jerome I
Institution:Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, Missouri, USA. aldi@wustl.edu
Abstract:OBJECTIVE The metabolic syndrome (MetS) is defined as concomitant disorders of lipid and glucose metabolism, central obesity, and high blood pressure, with an increased risk of type 2 diabetes and cardiovascular disease. This study tests whether common genetic variants with pleiotropic effects account for some of the correlated architecture among five metabolic phenotypes that define MetS. RESEARCH DESIGN AND METHODS Seven studies of the STAMPEED consortium, comprising 22,161 participants of European ancestry, underwent genome-wide association analyses of metabolic traits using a panel of ~2.5 million imputed single nucleotide polymorphisms (SNPs). Phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS in pairwise combinations. Individuals exceeding the NCEP thresholds for both traits of a pair were considered affected. RESULTS Twenty-nine common variants were associated with MetS or a pair of traits. Variants in the genes LPL, CETP, APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and LOC100129150 were further tested for their association with individual qualitative and quantitative traits. None of the 16 top SNPs (one per gene) associated simultaneously with more than two individual traits. Of them 11 variants showed nominal associations with MetS per se. The effects of 16 top SNPs on the quantitative traits were relatively small, together explaining from ~9% of the variance in triglycerides, 5.8% of high-density lipoprotein cholesterol, 3.6% of fasting glucose, and 1.4% of systolic blood pressure. CONCLUSIONS Qualitative and quantitative pleiotropic tests on pairs of traits indicate that a small portion of the covariation in these traits can be explained by the reported common genetic variants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号