首页 | 本学科首页   官方微博 | 高级检索  
检索        


Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH)
Institution:1. Oral Bioengineering, Barts and the London School of Medicine and Dentistry, Institute of Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK;2. School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
Abstract:ObjectiveThis study aims to incorporate 2:1 MgAl and 2:1 CaAl layered double hydroxides (LDHs) in experimental dental-composites to render them fluoride rechargeable. The effect of LDH on fluoride absorption and release, and their physico-mechanical properties are investigated.Methods2:1 CaAl and 2:1 MgAl LDH-composite discs prepared with 0, 10 and 30 wt% LDH were charged with fluoride (48 h) and transferred to deionized water (DW)/artificial saliva (AS). Fluoride release/re-release was measured every 24 h (ion-selective electrodes) with DW/AS replaced daily, and samples re-charged (5 min) with fluoride every 2 days. Five absorption-release cycles were conducted over 10 days. CaAl and MgAl LDH rod-shaped specimens (dry and hydrated; 0, 10 and 30 wt%) were studied for flexural strength and modulus. CaAl and MgAl LDH-composite discs (0, 10, 30 and 45 wt% LDH) were prepared to study water uptake (over 7 weeks), water desorption (3 weeks), diffusion coefficients, solubility and cation release (ICP-OES).ResultsCaAl LDH and MgAl LDH-composites significantly increased the amount of fluoride released in both media (P < 0.05). In AS, the mean release after every recharge was greater for MgAl LDH-composites compared to CaAl LDH-composites (P < 0.05). After every recharge, the fluoride release was greater than the previous release cycle (P < 0.05) for all LDH-composites. Physico-mechanical properties of the LDH-composites demonstrated similar values to those reported in literature. The solubility and cation release showed a linear increase with LDH loading.SignificanceLDH-composites repeatedly absorbed/released fluoride and maintained desired physico-mechanical properties. A sustained low-level fluoride release with LDH-composites could lead to a potential breakthrough in preventing early stage carious-lesions.
Keywords:Layered double hydroxide  Dental composites  Fluoride rechargeable  Fluoride release  Caries  Dentistry  Water uptake  Mechanical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号