首页 | 本学科首页   官方微博 | 高级检索  
     


Resin composite blocks for dental CAD/CAM applications reduce biofilm formation in vitro
Affiliation:1. Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy;2. Poliklinik für Zahnärztliche Prothetik und Werkstoffkunde, Leipzig University, Liebigstraße 12, 04103 Leipzig, Germany
Abstract:ObjectivesModern dentistry is increasingly focusing on digital procedures, including CAD/CAM technologies. New materials have to resist in a demanding environment that includes secondary caries occurrence. The current study hypothesized that the microbiological behavior of different RBCs for CAD/CAM applications is better than that of their counterparts for direct restorations due to differences in the surface characteristics.MethodsBoth direct and CAD/CAM RBCs were tested. Specimens were obtained from each group, polished, cleaned, stored in artificial saliva (1 w), then sterilized under UV (24 h). Specimens’ surface was assessed using profilometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction; resin/filler content was assessed using thermogravimetry. After pre-incubation with sterile human saliva (24 h), the microbiological behavior of the materials was assessed using four models: Streptococcus mutans adherence (2 h), S. mutans biofilm formation in an orbital shaking bioreactor (24 h), S. mutans biofilm formation in a continuous-flow bioreactor simulating shear forces (24 h), and mixed-plaque formation in the bioreactor (24 h). The viable biomass adhering to the specimens’ surfaces was measured using a tetrazolium dye-based test. Statistical analysis included verification of normality of distribution and homoscedasticity, then Oneway ANOVA and Tukey's test (α = 5%).ResultsWhen using the bioreactor setup, CAD/CAM RBCs generally yielded lower S. mutans and mixed-plaque biofilm formation compared to direct RBCs. This difference was not evidenced in the first two microbiological models. Differences in manufacturing and curing processes rather than in materials’ surface roughness and composition could explain these results.SignificanceCAD/CAM RBCs are promising materials from a microbiological point of view, featuring reduced biofilm formation on their surfaces when shear conditions similar to in vivo ones are present.
Keywords:CAD/CAM  Resin-based composites  Surface characterization  Biofilm formation  Bioreactors
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号