首页 | 本学科首页   官方微博 | 高级检索  
检索        


Conversion kinetics of rapid photo-polymerized resin composites
Institution:1. Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK;2. Photon Science Institute, University of Manchester, UK;3. Department of Restorative Dental Science, College of Dentistry, King Saud University, Saudi Arabia
Abstract:ObjectiveTo measure the degrees of conversion (DC), conversion kinetics, and the effect of post-irradiation time on rapid photo-polymerized bulk-fill resin composites under conditions equivalent to clinical depths of 1 and 4 mm.Methods36 specimens (n = 3), based on two resin composites incorporating PowerCure rapid-polymerization technology in two consistencies (PFill; PFlow) and two comparators with matching consistencies (Eceram; EFlow), were investigated from the same manufacturer (Ivoclar AG, Liechtenstein). Specimens were prepared within 4 mm diameter cylindrical molds, of either 1 mm or 4 mm depths respectively, to simulate near-surface and deep locations in a bulk-fill restoration. The independent variables in this study were: materials, thickness and time. Two high irradiance polymerization protocols were utilized for PowerCure materials: 2000 and 3050 mW/cm2 for 5 and 3 s, respectively. A standard (1200 mW/cm2) polymerization protocol was used with control materials. FTIR was utilized to measure DC in real-time for 24 h post-irradiation. The data were analyzed using Welch’s-ANOVA, Games-Howell post-hoc test, kinetic dual-exponential sum function and independent sample t-tests (p = 0.05).ResultsThe DC of the materials ranged between 44.7–59.0 % after 5 min, which increased after 24 h reaching 55.7–71.0 % (p < 0.05). Specimen thickness did not influence the overall DC. At 5 min, the highest DC was shown in EFlow. But PFlow, irradiated for 3 s and 5 s exhibited comparable results (p > 0.05). PFill composite irradiated with the 3 s and 5 s protocols did not differ from ECeram (p > 0.05). Specimen thickness and material viscosity affected polymerization kinetics and rate of polymerization (RPmax). Faster polymerization occurred in 1 mm specimens (except PFill-5 s and ECeram). PFill and PFlow exhibited faster conversion than the controls. RPmax varied across the specimen groups between 4.3–8.8 %/s with corresponding DC RPmax between 22.2–45.3 %.SignificancePolymerization kinetics and RPmax were influenced by specimen thickness and material viscosity. PFill and PFlow materials produced an overall comparable conversion at 5 min and 24 h post-irradiation, despite the ultra-short irradiation times, throughout the 4 mm specimen thickness.
Keywords:Resin composite  Photopolymerization  FTIR  Degree of conversion  AFCT  Polymerization kinetics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号