首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption and Surface Analysis of Sodium Phosphate Corrosion Inhibitor on Carbon Steel in Simulated Concrete Pore Solution
Authors:Ahmed Mohamed  Ulises Martin  David M. Bastidas
Affiliation:National Center for Education and Research on Corrosion and Materials Performance, NCERCAMP-UA, Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 E Buchtel Ave, Akron, OH 44325-3906, USA
Abstract:Corrosion of steel-reinforced concrete exposed to marine environments could lead to structural catastrophic failure in service. Hence, the construction industry is seeking novel corrosion preventive methods that are effective, cheap, and non-toxic. In this regard, the inhibitive properties of sodium phosphate (Na3PO4) corrosion inhibitor have been investigated for carbon steel reinforcements in 0.6 M Cl contaminated simulated concrete pore solution (SCPS). Different electrochemical testing has been utilized including potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky plots to test Na3PO4 at different concentrations: 0.05, 0.1, 0.3, and 0.6 M. It was found that Na3PO4 adsorbs on the surface through a combined physicochemical adsorption process, thus creating insoluble protective ferric phosphate film (FePO4) and achieving an inhibition efficiency (IE) up to 91.7%. The formation of FePO4 was elucidated by means of Fourier-transform infrared spectroscopy (FT–IR) and X-ray photoelectron spectroscopy (XPS). Quantum chemical parameters using density functional theory (DFT) were obtained to further understand the chemical interactions at the interface. It was found that PO43− ions have a low energy gap (ΔEgap), hence facilitating their adsorption. Additionally, Mulliken population analysis showed that the oxygen atoms present in PO43− are strong nucleophiles, thus acting as adsorption sites.
Keywords:corrosion inhibitor   phosphate   adsorption   density functional theory (DFT)   electrochemistry   electrochemical impedance spectroscopy (EIS)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号