首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro
Authors:Dror Seliktar  Richard A. Black  Raymond P. Vito  Robert M. Nerem
Affiliation:(1) Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332-0363;(2) Department of Clinical Engineering, University of Liverpool, First Floor, Duncan Building, Daulby Street, Liverpool, L69 3GA England, United Kingdom
Abstract:Dynamic mechanical conditioning is investigated as a means of improving the mechanical properties of tissue-engineered blood vessel constructs composed of living cells embedded in a collagen-gel scaffold. This approach attempts to elicit a unique response from the embedded cells so as to reorganize their surrounding matrix, thus improving the overall mechanical stability of the constructs. Mechanical conditioning, in the form of cyclic strain, was applied to the tubular constructs at a frequency of 1 Hz for 4 and 8 days. The response to conditioning thus evinced involved increased contraction and mechanical strength, as compared to statically cultured controls. Significant increases in ultimate stress and material modulus were seen over an 8 day culture period. Accompanying morphological changes showed increased circumferential orientation in response to the cyclic stimulus. We conclude that dynamic mechanical conditioning during tissue culture leads to an improvement in the properties of tissue-engineered blood vessel constructs in terms of mechanical strength and histological organization. This concept, in conjunction with a proper biochemical environment, could present a better model for engineering vascular constructs. © 2000 Biomedical Engineering Society.PAC00: 8719Rr, 8714Ee, 8718-h, 8768+z
Keywords:Tissue engineering  Vascular  Mechanical properties  Cyclic strain  Remodeling
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号