首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络在宫颈癌预后预测中的应用
引用本文:蔡鸿宁,张蕾,张敦兰,高晗,罗俊. 人工神经网络在宫颈癌预后预测中的应用[J]. 肿瘤防治研究, 2012, 39(9): 1117-1119. DOI: 10.3971/j.issn.1000-8578.2012.09.015
作者姓名:蔡鸿宁  张蕾  张敦兰  高晗  罗俊
作者单位:1.430070武汉,湖北省妇幼保健院肿瘤妇科;2.武汉工程大学计算机科学与工程学院;3.武汉大学中南医院病理科
基金项目:湖北省科技厅科技攻关资助项目(2007AA301B42-1);湖北省妇幼保健院院内课题资助项目
摘    要:目的探讨人工神经网络在宫颈癌术后5年生存期预测中的应用。方法收集125例宫颈癌患者的临床病理资料及治疗随访信息,按照4∶1的比例,随机分为训练组(100例)和测试组(25例),分别采用Logistics回归分析,筛选单因素分析有统计学意义的因素建立Logistics回归模型和概率神经网络模型(PNN),用训练组训练网络模型,用测试组检测网络模型。结果PNN模型的准确性92%,敏感度为75%,特异性为95.23%,Logistics回归模型的准确性为84%,敏感度为50.0%,特异性为82.61%。结论神经网络在生存分析中有很大的灵活性;在模型中可以容纳非线性效应,不需要对数据的随机特征如分布等作出假设,不要求满足H0假定,具有较广泛的应用前景。

关 键 词:人工神经网络  宫颈癌  预后  
收稿时间:2012-01-16

Application of Artificial Neural Networks in Prediction of Prognosis of Cervical Cancer
Cai Hongning,Zhang Lei,Zhang Dunlan,Gao Han,Luo Jun. Application of Artificial Neural Networks in Prediction of Prognosis of Cervical Cancer[J]. Cancer Research on Prevention and Treatment, 2012, 39(9): 1117-1119. DOI: 10.3971/j.issn.1000-8578.2012.09.015
Authors:Cai Hongning  Zhang Lei  Zhang Dunlan  Gao Han  Luo Jun
Affiliation:1.Department of Gynecology Oncology,Maternal and Child Health Hospital of Hubei Province,Wuhan430070,China;2.School of Computer Science and Engineering in Wuhan Institute of Technology;3.Department ofPathology,Zhongnan Hospital of Wuhan University
Abstract:Objective To explore the application of artificial neural networks in survival prediction for postoperative cervical cancer.Methods Clinical and pathological data of 125cases of cervical cancer and treatment follow-up information,were collected and in accordance with the ratio of 4:1,randomly divided into a training group and test group,respectively.Through Logistics regression,significant factors were screened by univariate analysis to build the logistics regression model,and a probabilistic neural network(PNN)model was established by significant factors.The training group was trained by network and the test group was detected by network.Results The accuracy,sensitivity and specificity of PNN model was 92%,75%and 95.23%,respectively.The accuracy,sensitivity and specificity of logistics regression model was 84%,50.0%and 82.61%respectively.Conclusion The neural network had a great deal of flexibility in the survival analysis.Nonlinear effects could be accommodated in the model,and random characteristics of the data such as the distribution was not required to make assumptions and might not meet the H0supposition,The neural network had broad application prospects.
Keywords:Artificial neural network  Cervical cancer  Prognosis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《肿瘤防治研究》浏览原始摘要信息
点击此处可从《肿瘤防治研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号