首页 | 本学科首页   官方微博 | 高级检索  
检索        


Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system
Institution:1. Department of Biotechnology, Yonsei University, Seoul, Korea;2. Western Seoul Center of Korea Basic Science Institute, Seoul, Korea;3. Department of Oral Microbiology and Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea;1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea;2. Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70, Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea;3. Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
Abstract:Paracrine signals produced from stem cells influence tissue regeneration by inducing the differentiation of endogenous stem or progenitor cells. However, many recent studies that have investigated paracrine signaling of stem cells have relied on either two-dimensional transwell systems or conditioned medium culture, neither of which provide optimal culture microenvironments for elucidating the effects of paracrine signals in vivo. In this study, we recapitulated in vivo-like paracrine signaling of human mesenchymal stem cells (hMSCs) to enhance functional neuronal differentiation of human neural stem cells (hNSCs) in three-dimensional (3D) extracellular matrices (ECMs) within a microfluidic array platform. In order to amplify paracrine signaling, hMSCs were genetically engineered using cationic polymer nanoparticles to overexpress glial cell-derived neurotrophic factor (GDNF). hNSCs were cultured in 3D ECM hydrogel used to fill central channels of the microfluidic device, while GDNF-overexpressing hMSCs (GDNF-hMSCs) were cultured in channels located on both sides of the central channel. This setup allowed for mimicking of paracrine signaling between genetically engineered hMSCs and endogenous hNSCs in the brain. Co-culture of hNSCs with GDNF-hMSCs in the 3D microfluidic system yielded reduced glial differentiation of hNSCs while significantly enhancing differentiation into neuronal cells including dopaminergic neurons. Neuronal cells produced from hNSCs differentiating in the presence of GDNF-hMSCs exhibited functional neuron-like electrophysiological features. The enhanced paracrine ability of GDNF-hMSCs was finally confirmed using an animal model of hypoxic-ischemic brain injury. This study demonstrates the presented 3D microfluidic array device can provide an efficient co-culture platform and provide an environment for paracrine signals from transplanted stem cells to control endogenous neuronal behaviors in vivo.
Keywords:Microfluidic array  Human neural stem cell  Human mesenchymal stem cell  Glial cell-derived neurotrophic factor  Paracrine signal  Neuronal differentiation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号