首页 | 本学科首页   官方微博 | 高级检索  
     


The cyanobacterial taxis protein HmpF regulates type IV pilus activity in response to light
Authors:Thomas V. Harwood  Esthefani G. Zuniga  HoJun Kweon  Douglas D. Risser
Affiliation:aDepartment of Biology, University of the Pacific, Stockton, CA, 95211
Abstract:Motility is ubiquitous in prokaryotic organisms including the photosynthetic cyanobacteria where surface motility powered by type 4 pili (T4P) is common and facilitates phototaxis to seek out favorable light environments. In cyanobacteria, chemotaxis-like systems are known to regulate motility and phototaxis. The characterized phototaxis systems rely on methyl-accepting chemotaxis proteins containing bilin-binding GAF domains capable of directly sensing light, and the mechanism by which they regulate the T4P is largely undefined. In this study we demonstrate that cyanobacteria possess a second, GAF-independent, means of sensing light to regulate motility and provide insight into how a chemotaxis-like system regulates the T4P motors. A combination of genetic, cytological, and protein–protein interaction analyses, along with experiments using the proton ionophore carbonyl cyanide m-chlorophenyl hydrazine, indicate that the Hmp chemotaxis-like system of the model filamentous cyanobacterium Nostoc punctiforme is capable of sensing light indirectly, possibly via alterations in proton motive force, and modulates direct interaction between the cyanobacterial taxis protein HmpF, and Hfq, PilT1, and PilT2 to regulate the T4P motors. Given that the Hmp system is widely conserved in cyanobacteria, and the finding from this study that orthologs of HmpF and T4P proteins from the distantly related model unicellular cyanobacterium Synechocystis sp. strain PCC6803 interact in a similar manner to their N. punctiforme counterparts, it is likely that this represents a ubiquitous means of regulating motility in response to light in cyanobacteria.

Motility is ubiquitous in prokaryotic organisms, including both swimming motility in aqueous environments and twitching or gliding motility on solid surfaces, and enables these organisms to optimize their position in response to various environmental factors. Among the photosynthetic cyanobacteria, surface motility is widespread and facilitates phototaxis to seek out favorable light environments (1, 2), and, for multicellular filamentous cyanobacteria, plays a key role in dispersal as well as the establishment of nitrogen-fixing symbioses with eukaryotes (3) and the formation of supracellular structures (35).Current understanding of cyanobacterial surface motility at the molecular level has been informed primarily by studies of two model organisms, the unicellular strain Synechocystis sp. strain PCC6803 (herein Synechocystis) and the filamentous strain Nostoc punctiforme ATCC29133/PCC73102, where motility is exhibited only by differentiated filaments termed “hormogonia.” Motility in both organisms is powered by a type IV pilus (T4P) system where the ATPases PilB and PilT drive the extension and subsequent retraction, respectively, of pili which adhere to the substrate and pull the cells forward (for review, see ref. 6). In Synechocystis, the T4P motors are distributed throughout the entire cell, allowing a 360 ° range of motion (7), whereas in N. punctiforme they are confined to rings at the cell poles (8), resulting in movement only along the long axis of the filament. Comparative genomics implies that this mechanism of motility is widely conserved among cyanobacteria (9).Both Synechocystis and N. punctiforme employ chemotaxis-like systems to regulate motility. One of these systems, the Hmp chemotaxis-like system of N. punctiforme (3, 10), and its orthologous counterpart, the Pil chemotaxis-like system of Synechocystis (11), includes homologs to the canonical Escherichia coli chemotaxis complex (for review, see ref. 12), including the histidine kinase CheA, the adaptor protein CheW, the response regulator CheY, and the methyl-accepting chemotaxis protein MCP. These systems are essential for motility in their respective organisms and appear to regulate the T4P motors, although there are distinct differences in the phenotypes for inactivation of the components from each. In Synechocystis, null mutations either enhance or reduce the level of surface piliation (11), whereas in N. punctiforme they disrupt the coordinated polarity, but not the overall level of piliation, and affect various other aspects of hormogonium development (3, 10). In N. punctiforme, the subcellular localization of this system has been determined and has been found arrayed in static, bipolar rings similar to the T4P motors (3). However, the signals that are perceived by the MCPs and the precise mechanism by which these systems modulate T4P activity is currently undefined.Recently, an additional component of the Hmp system, HmpF, was characterized (9). HmpF is a predicted coiled-coil protein and is ubiquitous to, but confined within, the cyanobacterial lineage (9). It is essential for accumulation of surface pili and exhibits dynamic, unipolar localization to the leading poles of most cells in hormogonium filaments (9). Based on these findings, a model has been proposed where the localization of HmpF is regulated by the other components of the Hmp system, and in turn, the unipolar accumulation of HmpF leads to the activation of the T4P motors on one side of the cell to facilitate directional movement.A second chemotaxis-like system in each organism, the Ptx system of N. punctiforme (13) and the Pix system of Synechocystis (14, 15), is essential for positive phototaxis. These systems contain MCPs with cyanobacteriochrome sensory domains capable of perceiving light (for review, see ref. 16). Disruption of the Pix system results in negative phototaxis under light conditions that normally produce a positive phototactic response (14). Several other proteins containing cyanobacteriochromes, and one containing a BLUF domain, also modulate phototaxis in Synechocystis (for review, see ref. 6). In N. punctiforme, disruption of the Ptx system abolishes the phototactic response completely, resulting in uniform movement in all directions regardless of the light conditions (13), and there are currently no other proteins reported to modulate phototaxis. More recently, a motile, wild isolate of the model unicellular cyanobacterium Synechococcus elongatus sp. PCC7942 was shown to possess a chemotaxis-like system that modulates phototaxis in a manner similar to that of the N. punctiforme Ptx system (17). How these systems influence T4P activity to facilitate phototaxis is also currently unknown.There is also a substantial body of literature on motility and phototaxis in cyanobacteria, primarily based on observational studies of various filamentous strains, that predates the development of genetically tractable model organisms (for review, see ref. 18). These reports suggested that the photosystems may serve a sensory role in modulating phototaxis and that proton motive force (PMF) powers motility (19, 20), a finding that is inconsistent with the theory that cyanobacteria possess a common T4P-based gliding motor driven by ATP hydrolysis. In this study, we help reconcile this historical data with more recent molecular studies by providing evidence that the Hmp chemotaxis-like system senses light, possibly indirectly through alterations in PMF, and in turn modulates the interaction of HmpF with the T4P base to activate the motors.
Keywords:cyanobacteria   gliding motility   hormogonia   type IV pili   phototaxis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号