首页 | 本学科首页   官方微博 | 高级检索  
检索        


Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene
Institution:1. FBK, via Sommarive 18, 38123 Trento, Italy;2. Physics Dep. National Dong Hwa University, Da-Hsueh Rd., Shou-Feng, Hualien 97403, Taiwan;3. Fraunhofer-Institut für Angewandte Festkörperphysik (IAF), Freiburg, Germany;4. Dep. of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, 38123 Trento, Italy;5. CNR-IFN, CSMFO Lab, Via alla Cascata 56/C, 38123 Trento, Italy
Abstract:The expression of a defective gene can lead to major cell dysfunctions among which cell proliferation and tumor formation. One promising therapeutic strategy consists in silencing the defective gene using small interfering RNA (siRNA). In previous publications we showed that diamond nanocrystals (ND) of primary size 35 nm, rendered cationic by polyethyleneimine-coating, can efficiently deliver siRNA into cell, which further block the expression of EWS/FLI-1 oncogene in a Ewing sarcoma disease model. However, a therapeutic application of such nanodiamonds requires their elimination by the organism, particularly in urine, which is impossible for 35 nm particles. Here, we report that hydrogenated cationic nanodiamonds of primary size 7 nm (ND-H) have also a high affinity for siRNA and are capable of delivering them in cells. With siRNA/ND-H complexes, we measured a high inhibition efficacy of EWS/FLI-1 gene expression in Ewing sarcoma cell line. Electron microscopy investigations showed ND-H in endocytosis compartments, and especially in macropinosomes from which they can escape before siRNA degradation occurred. In addition, the association of EWS/FLI-1 silencing by the siRNA/ND-H complex with a vincristine treatment yielded a potentiation of the toxic effect of this chemotherapeutic drug. Therefore ND-H appears as a promising delivery agent in anti-tumoral gene therapy.
Keywords:Nanodiamonds  Plasma hydrogenation  siRNA  Ewing sarcoma  Gene therapy  Drug delivery  Nanomedicine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号