首页 | 本学科首页   官方微博 | 高级检索  
检索        


Vanadate disrupts mammary gland development in whole organ culture.
Authors:E Gallo-Hendrikx  S A Murray  B K Vonderhaar  Z X Xiao
Institution:Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
Abstract:Protein tyrosine kinases and phosphatases are signaling molecules involved in all aspects of development, including proliferation, differentiation, and apoptosis. How disruption of protein tyrosine phosphatase affects mammary gland development is not entirely clear. We examined the effects of sodium vanadate, which is known to primarily inhibit tyrosine phosphatases, in mouse mammary gland development in whole organ culture. Mammary epithelial differentiation was effectively inhibited by vanadate in a dose-dependent manner as indicated by lack of epithelial alveoli compared to the contralateral non-treated gland controls. Mammary glands in the differentiation medium after four days in the presence of vanadate did not differentiate into alveoli. Instead, they exhibited prominent terminal end buds and lost the distinctive epithelial structures. The inhibitory effect of vanadate on mammary epithelial cell differentiation was irreversible after one day of treatment. Immunohistochemical staining for PCNA (Proliferating Cell Nuclear Antigen) showed that vanadate-treated glands exhibited elevated proliferation signals in the differentiation medium. Expression of beta-casein protein in the vanadate-treated glands decreased dramatically and progressively. Short-term exposure (up to 72 hours) of mammary glands to vanadate resulted in an increase in mammary epithelial cell density and loss of organization of the mammary structures. TUNEL assay of mammary glands with prolonged exposure to vanadate revealed widespread apoptosis. Furthermore, some cells were still proliferating or expressing beta-casein after prolonged exposure to vanadate. Taken together, these data indicate that vanadate treatment blocks mammary epithelial cell differentiation and promotes abnormal proliferation and apoptosis, likely through the inhibition of protein tyrosine phosphatase-mediated signaling.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号