首页 | 本学科首页   官方微博 | 高级检索  
     


Motion sickness increases the risk of accidental hypothermia
Authors:Gerard Nobel  Ola Eiken  Arne Tribukait  Roger Kölegård  Igor B. Mekjavic
Affiliation:(1) Royal Netherlands Navy, Den Helder, The Netherlands;(2) Swedish Defence Research Agency, Berzelius v. 13, Karolinska Institutet, 17177 Stockholm, Sweden;(3) Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
Abstract:Motion sickness (MS) has been found to increase body-core cooling during immersion in 28°C water, an effect ascribed to attenuation of the cold-induced peripheral vasoconstriction (Mekjavic et al. in J Physiol 535(2):619–623, 2001). The present study tested the hypothesis that a more profound cold stimulus would override the MS effect on peripheral vasoconstriction and hence on the core cooling rate. Eleven healthy subjects underwent two separate head-out immersions in 15°C water. In the control trial (CN), subjects were immersed after baseline measurements. In the MS-trial, subjects were rendered motion sick prior to immersion, by using a rotating chair in combination with a regimen of standardized head movements. During immersion in the MS-trial, subjects were exposed to an optokinetic stimulus (rotating drum). At 5-min intervals subjects rated their temperature perception, thermal comfort and MS discomfort. During immersion mean skin temperature, rectal temperature, the difference in temperature between the non-immersed right forearm and 3rd finger of the right hand (ΔT ff), oxygen uptake and heart rate were recorded. In the MS-trial, rectal temperature decreased substantially faster (33%, P < 0.01). Also, the ΔT ff response, an index of peripheral vasomotor tone, as well as the oxygen uptake, indicative of the shivering response, were significantly attenuated (P < 0.01 and P < 0.001, respectively) by MS. Thus, MS may predispose individuals to hypothermia by enhancing heat loss and attenuating heat production. This might have significant implications for survival in maritime accidents.
Keywords:Body temperature regulation  Vasodilation  Vasoconstriction  Shivering
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号