Ligand-based design, synthesis and primary in vivo screening of pyrrole derivatives as potential tricyclic anti-inflammatory agents |
| |
Authors: | Bijev Atanas Yaneva Diana Bocheva Adriana Stoev Georgi |
| |
Affiliation: | Department Organic Synthesis and Fuels, University of Chemical Technology and Metallurgy, Sofia, Bulgaria. a.bijev@uctm.edu |
| |
Abstract: | Twelve new compounds were designed as 5-aryl-1H-pyrrole analogs of celecoxib (CAS 169590-42-5) and were synthesized by Paal-Knorr cyclization in three series according to 1H-substitution: derivatives with salicylic acid, pyrazolone or isonicotinamide residues. The average physico-chemical and steric similarity between the prototype and the new analogs (completed with two previously synthesized related products) was assessed to be 82 % and therefore considered as a reliable prerequisite for spatial compatibility and effective binding to the cyclooxygenase (COX) enzymes. The anti-inflammatory effects were determined in acute inflammation model using the carrageenan-induced rat paw edema assay on male Wistar rats (180-200 g) at doses of 10, 20 and 40 mg/kg, i.p. Six of the new products showed higher percent of inhibition (up to 100 %) compared to the highly selective COX-2 inhibitor celecoxib and the nonselective indometacin (CAS 53-86-1) used as reference compounds. Ethyl 1-(1,5-di-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-4-pyrazolyl)-2-methyl-5-phenyl-1H-3-pyrrolecarboxylate (2b), ethyl 5-(4-chlor-ophenyl)-2-methyl-1-[(4-pyridylcarbonyl) amino]-1H-3-pyrrolecarboxylate (3c) and 5-[3-acetyl-2-methyl-5-(4-methylphenyl)-1H-1-pyrrolyl] -2-hydroxybenzoic acid (4b) were pointed out as the most active representatives of each of the three tested sub-series. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|