首页 | 本学科首页   官方微博 | 高级检索  
     


Biochemical and morphological effects of castration on the postorganizational development of the hypogastric ganglion
Authors:J E Melvin  T H McNeill  R W Hamill
Affiliation:Monroe Community Hospital, NY.
Abstract:The biochemical and morphological development of the sympathetic hypogastric ganglion (HG) was examined subsequent to postnatal castration at 10-11 days of age. Previous studies suggested that tyrosine hydroxylase (T-OH) activity, an index of noradrenergic maturation, and choline acetyltransferase (ChAT) activity, a marker for preganglionic terminal formation, were dependent on gonadal hormones during normal ontogeny. In the present studies, morphometric analyses of the HG revealed that the cross-sectional area of the cell soma and nucleus were significantly reduced following postnatal castration at day 10. Conversely, castration produced no change in the number of HG neurons. In addition, postnatal castration prevents the development of postsynaptic T-OH activity to a greater extent than ganglionic protein resulting in a significant loss of T-OH specific activity. In contrast, presynaptic ChAT activity was reduced in parallel with ganglionic protein, thus ChAT specific activity was unchanged. Testosterone replacement therapy, even in groups where treatment was delayed for up to 2 weeks after castration, completely reversed deficits in both T-OH and ChAT activities. These studies suggest that altered development of ganglion protein subsequent to postnatal castration is related to decreases in the size of neurons and not to the loss of neurons. The lack of cell loss also suggest that decreased levels of postsynaptic T-OH activity results from a loss of enzyme activity per cell and the decreased levels of ChAT activity probably represent fewer presynaptic terminals per neuron. In addition, delayed testosterone replacement subsequent to castration was effective in restoring enzyme activities suggesting an 'activational' not 'organizational' role for testosterone after postnatal day 10.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号