首页 | 本学科首页   官方微博 | 高级检索  
检索        


C-type natriuretic peptide inhibits L-type Ca2+ current in rat magnocellular neurosecretory cells by activating the NPR-C receptor
Authors:Rose Robert A  Anand-Srivastava Madhu B  Giles Wayne R  Bains Jaideep S
Institution:Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada.
Abstract:Magnocellular neurosecretory cells (MNCs), of the paraventricular and supraoptic nuclei of the hypothalamus, secrete the hormones vasopressin and oxytocin. As a result, they have an essential role in fundamental physiological responses including regulation of blood volume and fluid homeostasis. C-type natriuretic peptide (CNP) is present at high levels in the hypothalamus. Although CNP is known to decrease hormone secretion from MNCs, no studies have examined the role of the natriuretic peptide C receptor (NPR-C) in these neurons. In this study, whole cell recordings from acutely isolated MNCs, and MNCs in a coronal slice preparation, show that CNP (2 x 10(-8) M) and the selective NPR-C agonist, cANF (2 x 10(-8) M), significantly inhibit L-type Ca2+ current (I(Ca(L))) by approximately 50%. This effect on I(Ca(L)) is mimicked by dialyzing a G(i)-activator peptide (10(-7) M) into these cells, implicating a role for the inhibitory G protein, G(i). These NPR-C-mediated effects were specific to I(Ca(L)). T-type Ca2+ channels were unaffected by CNP. Current-clamp experiments revealed the ability of CNP, acting via the NPR-C receptor, to decrease (approximately 25%) the number of action potentials elicited during a 500 ms depolarizing stimulus. Analysis of action potential duration revealed that CNP and cANF significantly decreased 50% repolarization time (APD50) in MNCs. In summary, our findings show that CNP has a potent and selective inhibitory effect on I(Ca(L)) and on excitability in MNCs that is mediated by the NPR-C receptor. These data represent the first electrophysiological evidence of a functional role for the NPR-C receptor in the mammalian hypothalamus.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号